Week 4 – Arduino Programming

Nurul Hazlina Noordin

Course Outcomes

	Outcomes
1	Cultivate attitude towards team working and professional ethics through mentoring sessions.
2	Demonstrate competency in application of technical aspect of Science, Technology, Engineering and Mathematics (STEM) concepts.
3	Design, construct and innovate STEM based projects.

Please log into my padlet and answer these Qs:-

- What could an Arduino do?
- What would you like to know about Arduino?

https://padlet.com/nurulhazlina/ArduinoWeek4

W4 – Lesson Outline

Lesson Outcomes

- 1. Able to identify, construct electronic circuit using using a number of different sensors, actuators and communication media (wireless, internet);
- 2. Able to write programs in the programming environment "Processing",
- 3. Able con conduct experiments and trouble-shoot them;

Presentation Reminders :-

Learning Outcomes

PRE-LEARNING PREPARATION

Please ensure that you have the following:

PERSONAL COMPUTER Running Windows, Linux or MacOS with a USB port

ARDUINO BOARD with USB Cable

This guide uses UNO, but you can use any version of the ARDUINO board out there

ELECTRONIC COMPONENTS

Contains all necessary components and parts for all exercises

4

mBlock and ARDUINO SOFTWARE

- Referred to as an Integrated Developers Environment (IDE).
- Download the latest version according to your operating system (Windows, MacOS or Linux) at <u>http://arduino.cc/en/main/software</u>
- Once downloaded, click the executable file and follow the instructions
- A shortcut will be create on your desktop along with an Arduino folder in Mydocument

Microcontrollers are **dedicated** to one task and run one specific program

Examples of tasks could be:

- i. Received from inputs via ports (read from external hardware)
- **ii. Process the data,** store in file registers, arithmetic operations (added, subtracted, logic gates), etc.
- iii. Control outputs (control hardware)

Processor, Storage and RAM all in one tiny package

Arduino Programming - Nurul Hazlina

Electronic Components

LED

Push-button

Resistors

Breadboard Jumpers

LO 3 – Conduct Experiments

Arduino IDE

Programming Structure

<u>Objective:</u>

to write a sequential Arduino instruction – LED ON, LED Blinks

1. DIGITAL OUTPUT

Circuit Diagram

Resistor to Pin 13 Resistor \rightarrow +LED Negative LED \rightarrow GND

Resistor 150Ω (Brown-Green- Brown) LED = Flag refer to negative

LO 3 – Conduct Experiments

Programming 1 – LED ON


```
ΤI
 2 // the setup function runs once when you press reset or power the board
 3 void setup() {
    // initialize digital pin 13 as an output.
 4
    pinMode(13, OUTPUT);
 5
 6 }
 7
 8 // the loop function runs over and over again forever
 9 void loop()
    digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)
10
                 // wait for a second
11
    delay(1000);
12 | }
```

Programming 2– LED Blinks

Programming 2 – LED Blinking

Try It Out

Change to different pin by moving jumper wire & edit the sketch

Make the ON time longer than the OFF time

Make the LED blink faster or slower by editing the delay value.

LO 3 – Conduct Experiments

Arduino Programming - Nurul Hazlina

<u>Objective:</u>

- to implement PWM concept in electronic circuits
- to integrate analogWrite () for PWM signals
- to use for loops

2. ANALOG OUTPUT

Analog Output - PWM

Analog Signal Representation

Analog Output - PWM

Analog Output PWM

Arduino Uno Pin Assignment – Analog Output

analogWrite (pin, value); Pin = 3,5,6,9,10,11

Circuit Diagram Programming 4

Resistor to Pin 11 Resistor \rightarrow +LED Negative LED \rightarrow GND

Resistor 150Ω (Brown-Green- Brown) LED = Flag refer to negative

LO 3 – Conduct Experiments

Programming 4 – Fading Light

for (initialization; condition; increment) { //statement(s); }

Pseudo-code

START

- 1. Set LED Pin 11 as Output
- 2. Set value of pin 11 as 5
- 3. Hold the value
- 4. Set value of pin 11 as 10

. Repeat until max value 255 END


```
1.Draft your flowchart
2.Sketch your Arduino Codes
```

```
void loop()
{
  for (int i=0; i <= 255; i++){
    analogWrite(PWMpin, i);
    delay(10);
  }
</pre>
```

Programming 4 – Fading Light

int ledPin = 6; // LED connected to digital pin 9 void setup() { // nothing happens in setup void loop() { // fade in from min to max in increments of 5 points: for (int fadeValue = 0 ; fadeValue <= 255; fadeValue += 5) {</pre> // sets the value (range from 0 to 255): analogWrite(ledPin, fadeValue); // wait for 30 milliseconds to see the dimming effect delay(30); } // fade out from max to min in increments of 5 points: for (int fadeValue = 255 ; fadeValue >= 0; fadeValue -= 5) { // sets the value (range from 0 to 255): analogWrite(ledPin, fadeValue); // wait for 30 milliseconds to see the dimming effect delay(30);

3. DIGITAL INPUT DIGITAL OUTPUT

• adopt conditional statement in Arduino programming

<u>Objective:</u>

Push Button – digitalRead

LO 1 – Electronic Components

Circuit Diagram


```
void setup() {
    pinMode(9,INPUT);
    pinMode(5,OUTPUT);
```

Setup Digital pin 9 as input and setup Digital pin 5 as output.

```
void loop()
                                              Conditional statement:
ł
  if (digitalRead(9) == HIGH)
                                              To read Digital pin status, if it's HIGH,
   ł
     digitalWrite(5,HIGH);
                                              the action is to turn ON LED on Digital
   }
                                              pin 5.
  else
   ł
                                              if the Digital pin status is other than
                                              HIGH, the action is to turn OFF LED on
     digitalWrite(5,LOW);
                                              Digital pin 5.
   }
```

Programming – Push Button


```
const int LED=13;
int currentstate = LOW:
void setup()
ł
  pinMode (switch1, INPUT);
  pinMode (LED, OUTPUT);
1
void loop()
  currentstate=digitalRead(switch1);
  if (currentstate==HIGH)
    digitalWrite (LED, HIGH);
```

```
else
```

digitalWrite (LED, LOW);

```
delay (10);
```

Try It Out

Change the digital pins to connect LED and Pushbutton.

> Add a buzzer that will be turned ON whenever the pushbutton is pressed.

Modify sketch when push release ON, then push release again will OFF the LED.

LO 3 – Conduct Experiments

Answers

int inPin = 2; // the number of the input pin int outPin = 13; // the number of the output pin

int state = HIGH; // the current state of the output pin int reading; // the current reading from the input pin int previous = LOW; // the previous reading from the input pin

// the follow variables are long's because the time, measured in miliseconds,

// will quickly become a bigger number than can be stored in an int. long time = 0; // the last time the output pin was toggled long debounce = 200; // the debounce time, increase if the output flickers

```
void setup()
{
    pinMode(inPin, INPUT);
    pinMode(outPin, OUTPUT);
```

Answers

void loop()

```
reading = digitalRead(inPin);
```

```
// if the input just went from LOW and HIGH and we've waited long enough
// to ignore any noise on the circuit, toggle the output pin and remember
// the time
if (reading == HIGH && previous == LOW && millis() - time > debounce) {
    if (state == HIGH)
        state = LOW;
    else
        state = HIGH;
    time = millis();
}
```

digitalWrite(outPin, state);

```
previous = reading;
```

DATA TYPES

Arduino Data Types

DATA TYPES	VALUE RANGES		
int	-32768 to 32767		
float	-3.4028235 E38 to 3.4028235 E38		
long	-2,147,483,648 to 2,147,483,647		
unsigned int (no negative value)	0 <i>to</i> 65535		
char	-127 to 128		
word	0 to 65535		
byte	0 to 255		
boolean	True or False		
unsigner char	0 to 255		

Comparison Operators

RELATIONSHIP	OPERATOR		
Equal to	==		
Not equal to	!=		
Less than	<		
Greater than	>		
Less than or Equal to	<=		
More than or Equal to	>=		

Serial Communication

Informations passes between the computer and Arduino through the USB cable were transmitted as zeros ('0') and ones ('1') ... also known as bits!

```
int myduino = 7;
void setup()
{
   Serial.begin(9600);
}
void loop()
{
   //Send the value of myduino to Serial port.
   Serial.print(myduino);
}
```

Once uploaded, look at the right hand corner of the IDE and click on the Serial Monitor button.

We will now see the value 7 streaming horizontally across the Serial Monitor.

Try It Out

Using the push button sketch, print "Button Pressed" whenever the button is press

Print the status of button directly on Serial Monitor

When the button is not press, print "Release"

LO 3 – Conduct Experiments

3. ANALOG INPUT AND DIGITAL OUTPUT

• To incorporate analogRead() in Arduino Programming

Objective

LIGHT SENSOR

A Light Dependent Resistor (LDR) or also known as Photo-resistor is a cheap and easy to use light sensor that changes its resistance with light intensity. Reducing the amount of light it received will increase its resistance, thus making it inversely proportional.

Voltage output increases Voltage output decreases

LO 1 – Electronic Components

Circuit Diagram

Construct the Circuit

PIN3 to resistor 150 Ohm Resistor to +ve LED -ve LED to GND

Light Detected Resistor (LDR)

5V to LDRPIN1 PINA0 to LDRPIN2 LDRPIN2 to Resistor 1kΩ Resistor 1kΩ to GND

Resistor 1kΩ (brown,black,orange)

Try It Out

```
Serial.begin(9600)
```

```
SCENARIOOBSERVATION (Vout)LDR exposed to room ambient lightClosed the top surface of the LDR<br/>with your hand.Shine a torch light on the LDR.Close the light of the room.
```

```
void loop()
```

```
{
```

}

ł

}

```
int dout = analogRead(A0);
Serial.print(dout);
delay(300);
```

SCENARIO	OBSERVATION
LDR exposed to room ambient light	
Closed the top surface of the LDR with your hand.	
Shine a torch light on the LDR.	
Close the light of the room.	

Analogue Input

- This is the difference between an on/off sensor (which tells us whether something is there) and an analogue sensor, whose value continuously changes.
- By using the analogRead() function, we can read the voltage applied to one of the pins. This function returns a number between 0 and 1023, which represents voltages between 0 and 5 volts

Data Conversion

Vin = d_{out} x Resolution = 676 x 0.00488 = 3.3

Example: Complete System (Smart Street Light system)

Figure 13 : Complete circuit

Example: Complete System (Smart Street Light system)

(Application: Smart Street Light system)nst int ldrPin=A0; nst int ledPin=3; nst int PIR = 12; t currentstate=0;• declare analogvalue as variable • declare ldrpin as constant integer port A0 • declare ledpin = port digital 3 • PIR sensor pin 12		<pre>if (analogvalue<120) { if (currentstate==HIGH) { analogWrite(ledPin,255); } </pre>	 if analog value <120 (day noon) ,LED will OFF if analog value >120 (night) &&
<pre>void setup() { pinMode(PIR, INPUT); Serial.begin(9600); pinMode (ledPin, OUTPUT); } void loop() { currentstate=digitalRead (PIR); analogvalue=analogRead (ldrPin);</pre>	• the speed(baud rate) at which data is transferred to serial monitor	<pre>else analogWrite(ledPin,5); } else { digitalWrite (ledPin,LOW); }}</pre>	 If analog value >120 (hight) && PIR detect, LED will ON and give the maximum brightness if analog value >120 (night) && PIR not detect(no Car available) LED will ON and give the half
<pre>arial.println (analogvalue);</pre>	 Read analog port A0 and assign value to analogvalue. Value ranges from 0-1023 corresponding value 0-5V display value to serial monitor 		

Result:

Let's Recap Today's Session

1. Arduino Microcontroller and its programming language

Analoc

2. Electronic Components and its properties

Please log into my padlet again 🙂:-

- What could an Arduino do?
- What would you do with an Arduino?

https://padlet.com/nurulhazlina/ArduinoWeek4

School Engagement Schedule

28 March	29 Ma	29 March		. April	12 April
3 pm	3 pn	3 pm		8 pm	3 pm
mBlock	Ardui	Arduino		op Inv	App Inv
3 April	10 Ap	10 April		' April	
2.30 pm	2.30 p	2.30 pm		30 pm	
mBlock	Ardui	Arduino		op Inv	
Time	7 May	8 M	lay	9 May	10 May
	3 pm	3 p	m	3 pm	3 pm
	mBlock	Ardu	iino	App Inv	App Inv
AM					

PM