
Electronic System Design Finite State Machine

Nurul Hazlina 1

Finite State Machine

1. Review on counter design

2. State Diagrams for FSM

3. Moore & Mealy Models

4. State Minimization

5. Examples

6. HDL for FSM

Electronic System Design Finite State Machine

Nurul Hazlina 2

Sequential Logic Implementation

• Models for representing sequential circuits

– Finite-state machines (Moore and Mealy)

– Representation of memory (states)

– Changes in state (transitions)

• Design procedure

– State diagrams

– State transition table

– Next state functions

Electronic System Design Finite State Machine

Nurul Hazlina 3

2 – STATE DIAGRAM FOR FSM

Electronic System Design Finite State Machine

Nurul Hazlina 4

Finite State Machines

• Sequential circuits

– primitive sequential elements

– combinational logic

• Models for representing sequential circuits

– finite-state machines (Moore and Mealy)

• Basic sequential circuits revisited

– shift registers

– counters

• Design procedure

– state diagrams

– state transition table

– next state functions

• Hardware description languages

Electronic System Design Finite State Machine

Nurul Hazlina 5

Abstraction of state elements

1. Divide circuit

– combinational logic and state

2. Feedback loops

– Localize

– Break cycles

3. storage elements

– sequential logic

Combinational
Logic

Storage Elements

Outputs

State Outputs State Inputs

Inputs

Electronic System Design Finite State Machine

Nurul Hazlina 6

Forms of sequential logic

1. Asynchronous sequential logic

– state changes occur whenever state inputs change

– elements may be simple wires or delay elements

2. Synchronous sequential logic

– state changes occur in lock step across all storage elements

– using a periodic waveform - the clock

Clock

Electronic System Design Finite State Machine

Nurul Hazlina 7

In = 0

In = 1

In = 0 In = 1

100

010

110

111 001

FSM Representations

1. States

– determined by possible values in sequential storage elements

2. Transitions

– change of state

3. Clock

– controls when state can change by controlling storage elements

4. Sequential logic

– sequences through a series of states

– based on sequence of values on input signals

– clock period defines elements of sequence

Electronic System Design Finite State Machine

Nurul Hazlina 8

Can any sequential system be
represented with a state diagram?

• Shift register

– input value shown
on transition arcs

– output values shown
within state node

100 110

111

011

101 010 000

001

1

1

1

1

0

0

0
0

1

1

1

0

0

1

0 0

D Q D Q D Q IN

OUT1 OUT2 OUT3

CLK

Electronic System Design Finite State Machine

Nurul Hazlina 9

1- DESIGN A COUNTER

Electronic System Design Finite State Machine

Nurul Hazlina 10

010

100

110

011 001

000

101 111

3-bit up-counter

Counters are simple finite state
machines

• Counters

– proceed through well-defined sequence of states in response to
enable

• Many types of counters: binary, BCD, Gray-code

– 3-bit up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...

– 3-bit down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...

Electronic System Design Finite State Machine

Nurul Hazlina 11

How do we turn a state diagram
into logic?

• Counter

– 3 flip-flops to hold state

– logic to compute next state

– clock signal controls when flip-flop memory can change

• wait long enough for combinational logic to compute new value

• don't wait too long as that is low performance

D Q D Q D Q

OUT1 OUT2 OUT3

CLK

"1"

Electronic System Design Finite State Machine

Nurul Hazlina 12

FSM design procedure

• Start with counters

– simple because output is just state

– simple because no choice of next state based on input

• State diagram to state transition table

– tabular form of state diagram

– like a truth-table

• State encoding

– decide on representation of states

– for counters it is simple: just its value

• Implementation

– flip-flop for each state bit

– combinational logic based on encoding

Electronic System Design Finite State Machine

Nurul Hazlina 13

010

100

110

011 001

000

101 111

3-bit up-counter

present state next state

0 000 001 1

1 001 010 2

2 010 011 3

3 011 100 4

4 100 101 5

5 101 110 6

6 110 111 7

7 111 000 0

FSM design procedure: state
diagram to encoded state transition

table – counter case 1
• Tabular form of state diagram

• Like a truth-table (specify output for all input combinations)

• Encoding of states: easy for counters – just use value

Electronic System Design Finite State Machine

Nurul Hazlina 14

C3 C2 C1 N3 N2 N1

0 0 0 0 0 1

0 0 1 0 1 0

0 1 0 0 1 1

0 1 1 1 0 0

1 0 0 1 0 1

1 0 1 1 1 0

1 1 0 1 1 1

1 1 1 0 0 0

N1 <= C1’
N2 <= C1C2’ + C1’C2
 <= C1 xor C2
N3 <= C1C2C3’ + C1’C3 + C2’C3
 <= (C1C2)C3’ + (C1’ + C2’)C3
 <= (C1C2)C3’ + (C1C2)’C3
 <= (C1C2) xor C3

Verilog notation to show
function represents an
input to D-FF

Implementation

• D flip-flop for each state bit

• Combinational logic based on encoding

0 0

0 1

1 1

0 1 C1

C2

C3 N3

1 1

0 0

1 1

0 0 C1

C2

C3 N1

0 1

1 0

1 0

0 1 C1

C2

C3 N2

Electronic System Design Finite State Machine

Nurul Hazlina 15

In C1 C2 C3 N1 N2 N3
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 0
0 1 0 1 0 1 0
0 1 1 0 0 1 1
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 1 0 1
1 1 0 0 1 1 0
1 1 0 1 1 1 0
1 1 1 0 1 1 1
1 1 1 1 1 1 1

N1 <= In
N2 <= C1
N3 <= C2

Back to the shift register -
counter case 2

• Input determines next state

100 110

111

011

101 010 000

001

0

1

1 1

1 1

1

1

0

0

0

0 0

1

0 0

D Q D Q D Q IN

OUT1 OUT2 OUT3

CLK

Electronic System Design Finite State Machine

Nurul Hazlina 16

More complex counter example -
counter case 3

• Complex counter

– repeats 5 states in sequence

– not a binary number representation

• Step 1: derive the state transition diagram

– count sequence: 000, 010, 011, 101, 110

• Step 2: derive the state transition table from the state transition
diagram

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 – – –
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 – – –
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 – – –

note the don't care conditions that arise from the unused state codes

010

000 110

101

011

Electronic System Design Finite State Machine

Nurul Hazlina 17

C+ <= A

B+ <= B’ + A’C’

A+ <= BC’

More complex counter example
(cont’d)

• Step 3: K-maps for next state functions

0 0

X 1

0 X

X 1 A

B

C C+

1 1

X 0

0 X

X 1 A

B

C B+

0 1

X 1

0 X

X 0 A

B

C A+

Electronic System Design Finite State Machine

Nurul Hazlina 18

Self-starting counters (cont’d) –
counter case 3a

• Re-deriving state transition table from don't care assignment

0 0

1 1

0 0

1 1 A

B

C C+

1 1

1 0

0 1

0 1 A

B

C B+

0 1

0 1

0 0

0 0 A

B

C A+

Present State Next State
C B A C+ B+ A+
0 0 0 0 1 0
0 0 1 1 1 0
0 1 0 0 1 1
0 1 1 1 0 1
1 0 0 0 1 0
1 0 1 1 1 0
1 1 0 0 0 0
1 1 1 1 0 0

010

000 110

101

011

001 111

100

Electronic System Design Finite State Machine

Nurul Hazlina 19

Self-starting counters

• Start-up states

– at power-up, counter may be in an unused or invalid state

– designer must guarantee that it (eventually) enters a valid state

• Self-starting solution

– design counter so that invalid states eventually transition to a valid
state

– may limit exploitation of don't cares
implementation
on previous slide

010

000 110

101

011

001 111

100

010

000 110

101

011

001 111

100

Electronic System Design Finite State Machine

Nurul Hazlina 20

Activity

• 2-bit up-down counter (2 inputs)

– direction: D = 0 for up, D = 1 for down

– count: C = 0 for hold, C = 1 for count

01

00 11

10

C=0
D=X

C=0
D=X

C=0
D=X

C=0
D=X

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=0

C=1
D=1

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

Electronic System Design Finite State Machine

Nurul Hazlina 21

Activity (cont’d)

S1 S0 C D N1 N0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 1
0 0 1 1 1 1
0 1 0 0 0 1
0 1 0 1 0 1
0 1 1 0 1 0
0 1 1 1 0 0
1 0 0 0 1 0
1 0 0 1 1 0
1 0 1 0 1 1
1 0 1 1 0 1
1 1 0 0 1 1
1 1 0 1 1 1
1 1 1 0 0 0
1 1 1 1 1 0

N1 = C’S1
 + CDS0’S1’ + CDS0S1
 + CD’S0S1’ + CD’S0’S1
 = C’S1
 + C(D’(S1 S0) + D(S1 S0))

N0 = CS0’ + C’S0
0 1 1 0

0 1 1 0

1 0 0 1

1 0 0 1

D

S1

S0

C

0 0 1 1

0 0 1 1

1 0 1 0

0 1 0 1

D

S1

S0

C

Electronic System Design Finite State Machine

Nurul Hazlina 22

Counter/shift-register model

• Values stored in registers represent the state of the circuit

• Combinational logic computes:

– next state

• function of current state and inputs

– outputs

• values of flip-flops

Inputs

Outputs

Next State

Current State

next state
logic

Electronic System Design Finite State Machine

Nurul Hazlina 23

General state machine model

• Values stored in registers represent the state of the circuit

• Combinational logic computes:

– next state

• function of current state and inputs

– outputs

• function of current state and inputs (Mealy machine)

• function of current state only (Moore machine)

Inputs

Outputs

Next State

Current State

output
logic

next state
logic

Electronic System Design Finite State Machine

Nurul Hazlina 24

State machine model (cont’d)

• States: S1, S2, ..., Sk

• Inputs: I1, I2, ..., Im

• Outputs: O1, O2, ..., On

• Transition function: Fs(Si, Ij)

• Output function: Fo(Si) or Fo(Si, Ij)

Inputs

Outputs

Next State

Current State

output
logic

next state
logic

Clock

Next State

State

0 1 2 3 4 5

Electronic System Design Finite State Machine

Nurul Hazlina 25

3 - MOORE & MEALY MACHINES

Electronic System Design Finite State Machine

Nurul Hazlina 26

Mealy vs Moore Machines

• Mealy machines tend to have less states

– different outputs on arcs (n2) rather than states (n)

• Moore machines are safer to use

– outputs change at clock edge (always one cycle later)

– in Mealy machines, input change can cause output change as soon as
logic is done – a big problem when two machines are interconnected –
asynchronous feedback may occur if one isn’t careful

• Mealy machines react faster to inputs

– react in same cycle – don't need to wait for clock

– in Moore machines, more logic may be necessary to decode state into
outputs – more gate delays after clock edge

Electronic System Design Finite State Machine

Nurul Hazlina 27

Comparison of Mealy and Moore
machines (cont’d)

• Moore

• Mealy

• Synchronous Mealy

state feedback

inputs

outputs reg

combinational

logic for

next state logic for

outputs

inputs outputs

state feedback

reg
combinational

logic for

next state

logic for

outputs

inputs outputs

state feedback

reg
combinational

logic for

next state

logic for

outputs

Electronic System Design Finite State Machine

Nurul Hazlina 28

D/1

E/1

B/0

A/0

C/0

1

0

0

0

0

1

1

1

1

0

reset

 current next

reset input state state output

1 – – A

0 0 A B 0

0 1 A C 0

0 0 B B 0

0 1 B D 0

0 0 C E 0

0 1 C C 0

0 0 D E 1

0 1 D C 1

0 0 E B 1

0 1 E D 1

Outputs for a Moore machine

• Output is only function of state

– specify in state bubble in state diagram

– example: sequence detector for 01 or 10

Electronic System Design Finite State Machine

Nurul Hazlina 29

 current next

reset input state state output

1 – – A 0

0 0 A B 0

0 1 A C 0

0 0 B B 0

0 1 B C 1

0 0 C B 1

0 1 C C 0

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Outputs for a Mealy machine

• Output is function of state and inputs

– specify output on transition arc between states

– example: sequence detector for 01 or 10

Electronic System Design Finite State Machine

Nurul Hazlina 30

Registered Mealy machine (really
Moore)

• Synchronous (or registered) Mealy machine

– registered state AND outputs

– avoids ‘glitchy’ outputs

– easy to implement in PLDs

• Moore machine with no output decoding

– outputs computed on transition to next state rather than after
entering

– view outputs as expanded state vector

Inputs

Outputs

Current State

output
logic

next state
logic

Electronic System Design Finite State Machine

Nurul Hazlina 31

Activity

A 3-bit sequence detector will detect 111 and 001. All the input and
output will be reset after each sequence had been detected. An
example of input/output sequence that satisfies the conditions of the
network specifications is as follows;

 x = 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 0 1 1

 z = 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0

Draw the state transition diagram of the system using Mealy machine
method.

Electronic System Design Finite State Machine

Nurul Hazlina 32

Example: Ant Brain (Ward, MIT)

• Sensors:

– L and R antennae, 1 if in touching wall

• Actuators:

– F - forward step, TL/TR - turn
 left/right slightly

• Goal:

– find way out of maze

• Strategy:

– keep the wall on the right

Electronic System Design Finite State Machine

Nurul Hazlina 33

Ant Behavior

A: Following wall, touching
 Go forward, turning
 left slightly

B: Following wall, not touching
 Go forward, turning right
 slightly

C: Break in wall
 Go forward, turning
 right slightly

D: Hit wall again
 Back to state A

E: Wall in front
 Turn left until...

F: ...we are here, same as
 state B

G: Turn left until...
LOST: Forward until we
touch something

Electronic System Design Finite State Machine

Nurul Hazlina 34

Designing an Ant Brain

• State Diagram

R’
C

(TR, F)
R’

L’ R’

B
(TR, F)

L’ R’

L

R

A
(TL, F)

R

L’ R L + R

E/G
(TL)

L + R LOST
(F)

L’ R’

Electronic System Design Finite State Machine

Nurul Hazlina 35

Synthesizing the Ant Brain Circuit

• Encode States Using a Set of State Variables

– Arbitrary choice - may affect cost, speed

• Use Transition Truth Table

– Define next state function for each state variable

– Define output function for each output

• Implement next state and output functions using combinational
logic

– 2-level logic (ROM/PLA/PAL)

– Multi-level logic

– Next state and output functions can be optimized together

Electronic System Design Finite State Machine

Nurul Hazlina 36

Transition Truth Table

• Using symbolic states
and outputs

LOST
(F)

E/G
(TL)

A
(TL, F)

B
(TR, F)

C
(TR, F) R’

R’

L’ R’

R L’ R’

L

R

L’ R L + R

L + R

L’ R’

state L R next state outputs

LOST 0 0 LOST F

LOST – 1 E/G F

LOST 1 – E/G F

A 0 0 B TL, F

A 0 1 A TL, F

A 1 – E/G TL, F

B – 0 C TR, F

B – 1 A TR, F

...

Electronic System Design Finite State Machine

Nurul Hazlina 37

Synthesis

• 5 states : at least 3 state variables required (X, Y, Z)

– State assignment (in this case, arbitrarily chosen)

state L R next state outputs

X,Y,Z X', Y', Z' F TR TL

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 1 1 0 0

...

0 1 0 0 0 0 1 1 1 0 1

0 1 0 0 1 0 1 0 1 0 1

0 1 0 1 0 0 0 1 1 0 1

0 1 0 1 1 0 0 1 1 0 1

0 1 1 0 0 1 0 0 1 1 0

0 1 1 0 1 0 1 0 1 1 0

...

LOST - 000

E/G - 001

A - 010

B - 011

C - 100
it now remains
to synthesize
these 6 functions

Electronic System Design Finite State Machine

Nurul Hazlina 38

Synthesis of Next State and Output
Functions

state inputs next state outputs

X,Y,Z L R X+,Y+,Z+ F TR TL

0 0 0 0 0 0 0 0 1 0 0

0 0 0 - 1 0 0 1 1 0 0

0 0 0 1 - 0 0 1 1 0 0

0 0 1 0 0 0 1 1 0 0 1

0 0 1 - 1 0 1 0 0 0 1

0 0 1 1 - 0 1 0 0 0 1

0 1 0 0 0 0 1 1 1 0 1

0 1 0 0 1 0 1 0 1 0 1

0 1 0 1 - 0 0 1 1 0 1

0 1 1 - 0 1 0 0 1 1 0

0 1 1 - 1 0 1 0 1 1 0

1 0 0 - 0 1 0 0 1 1 0

1 0 0 - 1 0 1 0 1 1 0

e.g.

 TR = X + Y Z

 X+ = X R’ + Y Z R’ = R’ TR

Electronic System Design Finite State Machine

Nurul Hazlina 39

Circuit Implementation

• Outputs are a function of the current state only - Moore machine

L
R

F
TR
TL

Next State

Current State

output
logic

next state
logic

X+ Y+ Z+

X Y Z

Electronic System Design Finite State Machine

Nurul Hazlina 40

Don’t Cares in FSM Synthesis

• What happens to the "unused" states (101, 110, 111)?

• Exploited as don't cares to minimize the logic

– If states can't happen, then don't care what the functions do

– if states do happen, we may be in trouble

Ant is in deep trouble

if it gets in this state

000
(F)

001
(TL)

010
(TL, F)

011
(TR, F)

100
(TR, F) R’

R’

L’ R’

R L’ R’

L

R

L’ R L + R

L + R

L’ R’

111

101

110

Electronic System Design Finite State Machine

Nurul Hazlina 41

State Minimization

• Fewer states may mean fewer state variables

• High-level synthesis may generate many redundant states

• Two state are equivalent if they are impossible to distinguish from
the outputs of the FSM, i. e., for any input sequence the outputs are
the same

• Two conditions for two states to be equivalent:

– 1) Output must be the same in both states

– 2) Must transition to equivalent states for all input combinations

Electronic System Design Finite State Machine

Nurul Hazlina 42

Ant Brain Revisited

• Any equivalent states?

LOST
(F)

E/G
(TL)

A
(TL, F)

B
(TR, F)

C
(TR, F)

R’

R’

L’ R’

R L’ R’

L

R

L’ R L + R

L + R

L’ R’

Electronic System Design Finite State Machine

Nurul Hazlina 43

New Improved Brain

• Merge equivalent B and C states

• Behavior is exactly the same as the 5-state brain

• We now need only 2 state variables rather than 3

LOST
(F)

E/G
(TL)

A
(TL, F)

B/C
(TR, F)

R’

L’ R’

R L’ R’

L

L’ R L + R

L + R

L’ R’

Electronic System Design Finite State Machine

Nurul Hazlina 44

New Brain Implementation

state inputs next state outputs

X,Y L R X',Y' F TR TL

0 0 0 0 0 0 1 0 0

0 0 - 1 0 1 1 0 0

0 0 1 - 0 1 1 0 0

0 1 0 0 1 1 0 0 1

0 1 - 1 0 1 0 0 1

0 1 1 - 0 1 0 0 1

1 0 0 0 1 1 1 0 1

1 0 0 1 1 0 1 0 1

1 0 1 - 0 1 1 0 1

1 1 - 0 1 1 1 1 0

1 1 - 1 1 0 1 1 0

1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

X F

Y

R

L

0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

X TR

Y

R

L

0 1 0 1

0 1 0 1

0 1 0 1

0 1 0 1

X TL

Y

R

L

0 1 1 1

0 0 1 1

0 0 1 0

0 0 1 0

X X+

Y

R

L

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 1

X Y+

Y

R

L

Electronic System Design Finite State Machine

Nurul Hazlina 45

Description of Vending Machine
Question

• The vending machine delivers a package of gum after it has received 15 cents in
coins. The machine has a single coin slot that accepts nickels and dimes, one coin
at a time. A mechanical sensor indicates to the control whether a dime or a nickel
has been inserted into the coin slot. The controller's output causes a single
package of gum to be released down a chute to the -customer.

One further specification: We will design our machine so it does not give change.
A customer who pays with two dimes is out 5 cents!

• The specification may not completely define the behavior of the finite state
machine. For example, what happens if someone inserts a penny into the coin
slot? Or what happens after the gum is delivered to the customer? Sometimes we
have to make reasonable assumptions. For the first question, we assume that the
coin sensor returns any coins it does not recognize, leaving N and D unasserted.
For the latter, we assume that external logic resets the machine after the gum is
delivered.

Electronic System Design Finite State Machine

Nurul Hazlina 46

Condition – particularly to this case

• Second we will expect our machine to be reset before each new
use. This might be accomplished through separates mechanism
the customer uses to select the item to be purchace

Electronic System Design Finite State Machine

Nurul Hazlina 47

Example: Vending Machine

• Release item after 15 cents are deposited

• Single coin slot for dimes, nickels

• No change

Vending
Machine

FSM

N

D

Reset

Clock

Open Coin
Sensor

Release
Mechanism

Electronic System Design Finite State Machine

Nurul Hazlina 48

Example: Vending Machine (cont’d)

• Suitable Abstract Representation

– Tabulate typical input sequences:

• 3 nickels

• nickel, dime

• dime, nickel

• two dimes

– Draw state diagram:

• Inputs: N, D, reset

• Output: open chute

– Assumptions:

• Assume N and D asserted
for one cycle

• Each state has a self loop
for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S7
[open]

N

S5
[open]

N

Electronic System Design Finite State Machine

Nurul Hazlina 49

Example: Vending Machine (cont’d)

• Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
 0¢ 0 0 0¢ 0
 0 1 5¢ 0
 1 0 10¢ 0
 1 1 – –
 5¢ 0 0 5¢ 0
 0 1 10¢ 0
 1 0 15¢ 0
 1 1 – –
10¢ 0 0 10¢ 0
 0 1 15¢ 0
 1 0 15¢ 0
 1 1 – –
15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

Electronic System Design Finite State Machine

Nurul Hazlina 50

Example: Vending Machine (cont’d)

• Uniquely Encode States

present state inputs next state output
 Q1 Q0 D N D1 D0 open
 0 0 0 0 0 0 0
 0 1 0 1 0
 1 0 1 0 0
 1 1 – – –
 0 1 0 0 0 1 0
 0 1 1 0 0
 1 0 1 1 0
 1 1 – – –
 1 0 0 0 1 0 0
 0 1 1 1 0
 1 0 1 1 0
 1 1 – – –
 1 1 – – 1 1 1

Electronic System Design Finite State Machine

Nurul Hazlina 51

Example: Vending Machine (cont’d)

• Mapping to Logic

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

0 0 1 1

0 1 1 1

X X X X

1 1 1 1

Q1
D1

Q0

N

D

0 1 1 0

1 0 1 1

X X X X

0 1 1 1

Q1
D0

Q0

N

D

0 0 1 0

0 0 1 0

X X X X

0 0 1 0

Q1
Open

Q0

N

D

Electronic System Design Finite State Machine

Nurul Hazlina 52

Example: Vending Machine (cont’d)

• One-hot Encoding

present state inputs next state output
Q3 Q2 Q1 Q0 D N D3 D2 D1 D0 open

 0 0 0 1 0 0 0 0 0 1 0
 0 1 0 0 1 0 0
 1 0 0 1 0 0 0
 1 1 - - - - -
 0 0 1 0 0 0 0 0 1 0 0
 0 1 0 1 0 0 0

 1 0 1 0 0 0 0
 1 1 - - - - -
 0 1 0 0 0 0 0 1 0 0 0
 0 1 1 0 0 0 0
 1 0 1 0 0 0 0
 1 1 - - - - -

 1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Electronic System Design Finite State Machine

Nurul Hazlina 53

Equivalent Mealy and Moore State
Diagrams

• Moore machine

– outputs associated with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

Mealy machine
outputs associated with
transitions

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

Electronic System Design Finite State Machine

Nurul Hazlina 54

Example: Traffic Light Controller

• A busy highway is intersected by a little used farmroad

• Detectors C sense the presence of cars waiting on the farmroad

– with no car on farmroad, light remain green in highway direction

– if vehicle on farmroad, highway lights go from Green to Yellow to Red,
allowing the farmroad lights to become green

– these stay green only as long as a farmroad car is detected but never
longer than a set interval

– when these are met, farm lights transition from Green to Yellow to
Red, allowing highway to return to green

– even if farmroad vehicles are waiting, highway gets at least a set
interval as green

Electronic System Design Finite State Machine

Nurul Hazlina 55

Example: Traffic Light Controller

• Assume you have an interval timer that generates:

– a short time pulse (TS) and

– a long time pulse (TL),

– in response to a set (ST) signal.

– TS is to be used for timing yellow lights and TL for green lights

Electronic System Design Finite State Machine

Nurul Hazlina 56

Example: Traffic Light Controller
(cont’)

• Highway/farm road intersection

highway

farm road

car sensors

Electronic System Design Finite State Machine

Nurul Hazlina 57

Example: Traffic Light Controller
(cont’)

• Tabulation of Inputs and Outputs

inputs description outputs description
reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired ST start timing a short or long interval
TL long time interval expired

• Tabulation of unique states – some light configurations imply
others

state description
S0 highway green (farm road red)
S1 highway yellow (farm road red)
S2 farm road green (highway red)
S3 farm road yellow (highway red)

Electronic System Design Finite State Machine

Nurul Hazlina 58

Example: Traffic Light Controller
(cont’)

• State Diagram

S0: HG

S1: HY

S2: FG

S3: FY

Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

S0

S2

S3 S1

Electronic System Design Finite State Machine

Nurul Hazlina 59

Example: Traffic Light Controller
(cont’)

• Generate state table with symbolic states

• Consider state assignments

Inputs Present State Next State Outputs
C TL TS ST H F

0 – – HG HG 0 Green Red
– 0 – HG HG 0 Green Red
1 1 – HG HY 1 Green Red
– – 0 HY HY 0 Yellow Red
– – 1 HY FG 1 Yellow Red
1 0 – FG FG 0 Red Green

0 – – FG FY 1 Red Green
– 1 – FG FY 1 Red Green
– – 0 FY FY 0 Red Yellow
– – 1 FY HG 1 Red Yellow

SA1: HG = 00 HY = 01 FG = 11 FY = 10
SA2: HG = 00 HY = 10 FG = 01 FY = 11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)

output encoding – similar problem
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Electronic System Design Finite State Machine

Nurul Hazlina 60

Logic for Different State
Assignments

• SA1
 NS1 = C•TL'•PS1•PS0 + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
 NS0 = C•TL•PS1'•PS0' + C•TL'•PS1•PS0 + PS1'•PS0

 ST = C•TL•PS1'•PS0' + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
 H1 = PS1 H0 = PS1'•PS0
 F1 = PS1' F0 = PS1•PS0'

• SA2
 NS1 = C•TL•PS1' + TS'•PS1 + C'•PS1'•PS0
 NS0 = TS•PS1•PS0' + PS1'•PS0 + TS'•PS1•PS0

 ST = C•TL•PS1' + C'•PS1'•PS0 + TS•PS1
 H1 = PS0 H0 = PS1•PS0'
 F1 = PS0' F0 = PS1•PS0

• SA3
 NS3 = C'•PS2 + TL•PS2 + TS'•PS3 NS2 = TS•PS1 + C•TL'•PS2
 NS1 = C•TL•PS0 + TS'•PS1 NS0 = C'•PS0 + TL'•PS0 + TS•PS3

 ST = C•TL•PS0 + TS•PS1 + C'•PS2 + TL•PS2 + TS•PS3
 H1 = PS3 + PS2 H0 = PS1
 F1 = PS1 + PS0 F0 = PS3

Electronic System Design Finite State Machine

Nurul Hazlina 61

Vending Machine Example
(PLD mapping)

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)

D1 = reset'(Q1 + D + Q0N)

OPEN = Q1Q0

D Q

D Q

D Q

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset

Electronic System Design Finite State Machine

Nurul Hazlina 62

Vending Machine (cont’d)

• OPEN = Q1Q0 creates a combinational delay after Q1 and Q0
change

• This can be corrected by retiming, i.e., move flip-flops and logic
through each other to improve delay

• OPEN = reset'(Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)
 = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

• Implementation now looks like a synchronous Mealy machine

– Common for programmable devices to have FF at end of logic

Electronic System Design Finite State Machine

Nurul Hazlina 63

Vending Machine (Retimed PLD
Mapping)

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

OPEN

D Q

D Q

D Q

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset

Electronic System Design Finite State Machine

Nurul Hazlina 64

STATE MINIMIZATION

Electronic System Design Finite State Machine

Nurul Hazlina 65

Finite State Machine Optimization

• Should look over this one

• Make sure you know the motivation for this

– State Minimization

• Try to merge state with same behavior so total # of states are less

– State Encoding

• Less combinational logic involved in implementing if correct state
encoding is chosen.

• Less Flip flops used if a more dense encoding is used.

– # of flip flop could range from log2(n) to n

• Make sure you know the algorithm for both

Electronic System Design Finite State Machine

Nurul Hazlina 66

Finite State Machine Optimization

• State Minimization

– Fewer states require fewer state bits

– Fewer bits require fewer logic equations

• Encodings: State, Inputs, Outputs

– State encoding with fewer bits has fewer equations to implement

• However, each may be more complex

– State encoding with more bits (e.g., one-hot) has simpler equations

• Complexity directly related to complexity of state diagram

– Input/output encoding may or may not be under designer control

Electronic System Design Finite State Machine

Nurul Hazlina 67

Algorithmic Approach to State
Minimization

• Goal – identify and combine states that have equivalent behavior

• Equivalent States:

– Same output

– For all input combinations, states transition to same or equivalent
states

• Algorithm Sketch

– 1. Place all states in one set

– 2. Initially partition set based on output behavior

– 3. Successively partition resulting subsets based on next state
transitions

– 4. Repeat (3) until no further partitioning is required

• states left in the same set are equivalent

– Polynomial time procedure

Electronic System Design Finite State Machine

Nurul Hazlina 68

NurulHazlina/BEE2243/FSM

State Minimization

2 Methods:

1. Row Matching

2. Implication Chart

Electronic System Design Finite State Machine

Nurul Hazlina 69

NurulHazlina/BEE2243/FSM

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

Implication Chart Method

• Sequence detector for 010 or 110

S0

S3

S2 S1

S5 S6 S4

1/0 0/0

1/0

1/0
0/1

0/0 1/0 0/0

1/0
0/0

1/0
0/1

1/0
0/0

Electronic System Design Finite State Machine

Nurul Hazlina 70

Implication Chart Method

Figure 1 : Chart with entry of every pairs of states

S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5 S6

Electronic System Design Finite State Machine

Nurul Hazlina 71

Implication Chart Method

S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5 S6

Electronic System Design Finite State Machine

Nurul Hazlina 72

NurulHazlina/BEE2243/FSM

Implication Chart Method

X X X X X

X

X X X X

S0, S1, S2, S3, S5same output (group1)

S4, S6 same output (group2) any combination across g1 and g2 indicate by X

S1-S3

S2-S4

S1-S5

S2-S6

S1-S0

S2-S0

S0-S0

S0-S0

S3-S5

S4-S6

S3-S0

S4-S0

IMPLIED

STATE

PAIRS

S5-S0

S6-S0

S1-S0

S2-S0

S3-S0

S4-S0

S5-S0

S6-S0

S0-S0

S0-S0

S0

S1

S2

S3

S4

S5

S6

S0 S1 S2 S3 S4 S5 S6

Electronic System Design Finite State Machine

Nurul Hazlina 73

NurulHazlina/BEE2243/FSM

Implied State Pairs

S0, S1, S2, S3, S5same output (group1)

S4, S6 same output (group2) any combination across g1 and g2 indicate by X

S0

S1

S2

S3

S5

S4

S6

G1

G2

Electronic System Design Finite State Machine

Nurul Hazlina 74

Implied State Pairs

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

Electronic System Design Finite State Machine

Nurul Hazlina 75

NurulHazlina/BEE2243/FSM

Rechecked Implied State Pairs

X X X X X

X X X X

X X X X

X X X

X

X

IF square Si and Sj contains the ISP Sm-Sn and square Sm,Sn contains an X, then

Mark Si,Sj with an X as well.

S0-S0

S0-S0

S3-S5

S4-S6

S0-S0

S0-S0

S0 S1 S2 S3 S4 S5 S6

S0

S1

S2

S3

S4

S5

S6

Electronic System Design Finite State Machine

Nurul Hazlina 76

Implication Chart Method

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 + 1 S1' S3' S4' 0 0
X0 S3' S0 S0 0 0
X1 S4' S0 S0 1 0

S0

S1’

S3’ S4’

X/0

1/0

1/0 0/1

0/0

X/0

Simplified Table

Electronic System Design Finite State Machine

Nurul Hazlina 77

NurulHazlina/BEE2243/FSM

Another Example

G

[0]

A

[0]

B

[0]

C

[0]

D

[1]
E

[0]

F

[0]
1

1

1

1

1

1

0

0

0

0

0

1

0 0

Electronic System Design Finite State Machine

Nurul Hazlina 78
NurulHazlina/BEE2243/FSM

Continue

Present

state

Next state

 0 1

output

A B C 0

B A C 0

C D C 0

D D E 1

E A F 0

F B G 0

G A E 0

Divide into 2 groups;

A,B,C,E,F,G and D based on

Output value

Electronic System Design Finite State Machine

Nurul Hazlina 79

State Minimization Example

• Sequence Detector for 010 or 110

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

S0

S3

S2 S1

S5 S6 S4

1/0 0/0

1/0

1/0
0/1

0/0 1/0 0/0

1/0
0/0

1/0
0/1

1/0
0/0

Electronic System Design Finite State Machine

Nurul Hazlina 80

Method of Successive Partitions
Row Matching

(S0 S1 S2 S3 S4 S5 S6)

(S0 S1 S2 S3 S5) (S4 S6)

(S0 S3 S5) (S1 S2) (S4 S6)

(S0) (S3 S5) (S1 S2) (S4 S6)

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1 S2 0 0
0 S1 S3 S4 0 0
1 S2 S5 S6 0 0
00 S3 S0 S0 0 0
01 S4 S0 S0 1 0
10 S5 S0 S0 0 0
11 S6 S0 S0 1 0

S1 is equivalent to S2

S3 is equivalent to S5

S4 is equivalent to S6

Electronic System Design Finite State Machine

Nurul Hazlina 81

Minimized FSM

• State minimized sequence detector for 010 or 110

Input Next State Output
Sequence Present State X=0 X=1 X=0 X=1

Reset S0 S1' S1' 0 0
0 + 1 S1' S3' S4' 0 0
X0 S3' S0 S0 0 0
X1 S4' S0 S0 1 0

S0

S1’

S3’ S4’

X/0

1/0

1/0 0/1

0/0

X/0

Electronic System Design Finite State Machine

Nurul Hazlina 82

Implication Chart

Electronic System Design Finite State Machine

Nurul Hazlina 83

More Complex State Minimization

• Multiple input example

symbolic state
transition table

present next state output
 state 00 01 10 11
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S4 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0

inputs here

10

01

11

00

00

01

11 10

10

01

11 00

10

00

11

00

11
10

01

10

11
01

00

S0
[1]

S2
[1]

S4
[1]

S1
[0]

S3
[0]

S5
[0]

01

Electronic System Design Finite State Machine

Nurul Hazlina 84

Minimized FSM

• Implication Chart Method

– Cross out incompatible states based on outputs

– Then cross out more cells if indexed chart entries are already crossed
out

S0-S1
S1-S3
S2-S2
S3-S4

S0-S0
S1-S1
S2-S2
S3-S5

S0-S1
S3-S0
S1-S4
S4-S5

S0-S1
S3-S4
S1-S0
S4-S5

S1-S0
S3-S1
S2-S2
S4-S5

S4-S0
S5-S5

S1-S1
S0-S4

minimized state table
(S0==S4) (S3==S5)

present next state output
 state 00 01 10 11
 S0' S0' S1 S2 S3' 1
 S1 S0' S3' S1 S3' 0
 S2 S1 S3' S2 S0' 1
 S3' S1 S0' S0' S3' 0

S1

S2

S3

S4

S5

S0 S1 S2 S3 S4

Electronic System Design Finite State Machine

Nurul Hazlina 85

Minimizing Incompletely Specified
FSMs

• Equivalence of states is transitive when machine is fully specified

• But its not transitive when don't cares are present
 e.g., state output
 S0 – 0 S1 is compatible with both S0 and S2
 S1 1 – but S0 and S2 are incompatible
 S2 – 1

• No polynomial time algorithm exists for determining best grouping
of states into equivalent sets that will yield the smallest number of
final states

Electronic System Design Finite State Machine

Nurul Hazlina 86

Minimizing States May Not Yield
Best Circuit

• Example: edge detector - outputs 1 when last two input changes
from 0 to 1

X Q1 Q0 Q1
+ Q0

+

0 0 0 0 0

0 0 1 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 1 1

1 1 1 1 1

– 1 0 0 0

Q1
+ = X (Q1 xor Q0)

Q0
+ = X Q1’ Q0’

00
[0]

11
[0]

01
[1] X’

X’

X’

X

X

X

Electronic System Design Finite State Machine

Nurul Hazlina 87

Another Implementation of Edge
Detector

• "Ad hoc" solution - not minimal but cheap and fast

00
[0]

10
[0]

01
[1]

X’ X

X’

X

X

X 11
[0]

X’

X’

Electronic System Design Finite State Machine

Nurul Hazlina 88

Sequential Logic Implementation
Summary

• Models for representing sequential circuits

– Abstraction of sequential elements

– Finite state machines and their state diagrams

– Inputs/outputs

– Mealy, Moore, and synchronous Mealy machines

• Finite state machine design procedure

– Deriving state diagram

– Deriving state transition table

– Determining next state and output functions

– Implementing combinational logic

• Implementation of sequential logic

– State minimization

– State assignment

– Support in programmable logic devices

Electronic System Design Finite State Machine

Nurul Hazlina 89

SEQUENTIAL LOGIC EXAMPLES

Finite State Machine Concept

FSMs are the decision making logic of digital designs

Partitioning designs into datapath and control elements

When inputs are sampled and outputs asserted

Basic Design Approach: 4-step Design Process

Implementation Examples and Case Studies

Finite-string pattern recognizer – mini project a

Traffic light controller – mini project b

Door combination lock – mini project c

Electronic System Design Finite State Machine

Nurul Hazlina 90

General FSM Design Procedure

1. Determine inputs and outputs

2. Determine possible states of machine

– State minimization

3. Encode states and outputs into a binary code

– State assignment or state encoding

– Output encoding

– Possibly input encoding (if under our control)

4. Realize logic to implement functions for states and outputs

– Combinational logic implementation and optimization

– Choices in steps 2 and 3 have large effect on resulting logic

Electronic System Design Finite State Machine

Nurul Hazlina 91

Finite String Pattern Recognizer
(Step 1)

• Finite String Pattern Recognizer

– One input (X) and one output (Z)

– Output is asserted whenever the input sequence …010… has been
observed, as long as the sequence 100 has never been seen

• Step 1: Understanding the Problem Statement

– Sample input/output behavior:

 X: 0 0 1 0 1 0 1 0 0 1 0 …
 Z: 0 0 0 1 0 1 0 1 0 0 0 …

 X: 1 1 0 1 1 0 1 0 0 1 0 …
 Z: 0 0 0 0 0 0 0 1 0 0 0 …

MINI PROJECT 3a

Electronic System Design Finite State Machine

Nurul Hazlina 92

Finite String Pattern Recognizer
(Step 2)

• Step 2: Draw State Diagram

– For the strings that must be recognized, i.e., 010 and 100

– Moore implementation

S1
[0]

S2
[0]

0

1

S3
[1]

0

S4
[0]

1

0 or 1

S5
[0]

0

0

S6
[0]

S0
[0]

reset

Electronic System Design Finite State Machine

Nurul Hazlina 93

Finite String Pattern Recognizer
(Step 2, cont’d)

• Exit conditions from state S3: have recognized …010

– If next input is 0 then have …0100 = ...100 (state S6)

– If next input is 1 then have …0101 = …01 (state S2)

1

...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

1 0

1

reset

0 or 1 S3
[1]

0

S5
[0]

0

0

S6
[0]

Exit conditions from S1:
recognizes strings of form …0
(no 1 seen);
loop back to S1 if input is 0

Exit conditions from S4:
recognizes strings of form …1
(no 0 seen);
loop back to S4 if input is 1

...1 ...0
1 0

Electronic System Design Finite State Machine

Nurul Hazlina 94

Finite String Pattern Recognizer
(Step 2, cont’d)

• S2 and S5 still have incomplete transitions

– S2 = …01; If next input is 1,
then string could be prefix of (01)1(00)
S4 handles just this case

– S5 = …10; If next input is 1,
then string could be prefix of (10)1(0)
S2 handles just this case

• Reuse states as much as possible

– Look for same meaning

– State minimization leads to
smaller number of bits to
represent states

• Once all states have complete
set of transitions we have
final state diagram

1

...01

...010 ...100

S4
[0]

S1
[0]

S0
[0]

S2
[0]

1 0

1

reset

0 or 1 S3
[1]

0

S5
[0]

0

0

S6
[0]

...1 ...0
1 0

...10

1

1

Electronic System Design Finite State Machine

Nurul Hazlina 95

Finite String Pattern Recognizer

• Review of Process

– Understanding problem

• Write down sample inputs and outputs to understand specification

– Derive a state diagram

• Write down sequences of states and transitions for sequences to be
recognized

– Minimize number of states

• Add missing transitions; reuse states as much as possible

– State assignment or encoding

• Encode states with unique patterns

– Simulate realization

• Verify I/O behavior of your state diagram to ensure it matches
specification

Electronic System Design Finite State Machine

Nurul Hazlina 96

Traffic Light Controller as Two
Communicating FSMs

• Without Separate Timer

– S0 would require 7 states

– S1 would require 3 states

– S2 would require 7 states

– S3 would require 3 states

– S1 and S3 have simple transformation

– S0 and S2 would require many more arcs

• C could change in any of seven states

• By Factoring Out Timer

– Greatly reduce number of states

• 4 instead of 20

– Counter only requires seven or eight states

• 12 total instead of 20

TS/ST

S1

TS'

–/ST

S1a

S1b

S1c

traffic light

controller

timer

TL TS ST

MINI PROJECT 3b

Electronic System Design Finite State Machine

Nurul Hazlina 97

Communicating Finite State
Machines

• One machine's output is another machine's input

machines advance in lock step
initial inputs/outputs: X = 0, Y = 0

CLK

FSM1

X

FSM2

Y

A A B

C D D

FSM 1 FSM 2

X

Y

Y==1

A
[1]

Y==0

B
[0]

Y==0

X==1

C
[0]

X==0
X==0

D
[1]

X==1
X==0

Electronic System Design Finite State Machine

Nurul Hazlina 98

Datapath and Control

• Digital hardware systems = data-path + control

– Datapath: registers, counters, combinational functional units (e.g.,
ALU), communication (e.g., busses)

– Control: FSM generating sequences of control signals that instructs
datapath what to do next

"puppet"

"puppeteer who pulls the strings"
control

data-path

status
info and
inputs

control
signal
outputs

state

Electronic System Design Finite State Machine

Nurul Hazlina 99

Digital Combinational Lock

• Door Combination Lock:

– Punch in 3 values in sequence and the door opens; if there is an error
the lock must be reset; once the door opens the lock must be reset

– Inputs: sequence of input values, reset

– Outputs: door open/close

– Memory: must remember combination or always have it available

– Open questions: how do you set the internal combination?

• Stored in registers (how loaded?)

• Hardwired via switches set by user

MINI PROJECT 3c

Electronic System Design Finite State Machine

Nurul Hazlina 100

Determining Details of the
Specification

• How many bits per input value?

• How many values in sequence?

• How do we know a new input value is entered?

• What are the states and state transitions of the system?

reset value

open/closed

new

clock

Electronic System Design Finite State Machine

Nurul Hazlina 101

Digital Combination Lock State
Diagram

• States: 5 states

– Represent point in execution of machine

– Each state has outputs

• Transitions: 6 from state to state, 5 self transitions, 1 global

– Changes of state occur when clock says its ok

– Based on value of inputs

• Inputs: reset, new, results of comparisons

• Output: open/closed

closed closed closed
C1==value

& new
C2==value

& new
C3==value

& new

C1!=value
& new

C2!=value
& new

C3!=value
& new

closed

reset

not new not new not new

S1 S2 S3 OPEN

ERR

open

Electronic System Design Finite State Machine

Nurul Hazlina 102

Datapath and Control Structure

• Datapath

– Storage registers for combination values

– Multiplexer

– Comparator

• Control

– Finite-state machine controller

– Control for data-path (which value to compare)

reset

open/closed

new C1 C2 C3

comparator value
equal

multiplexer

controller

mux
control

clock
4

4 4 4

4

Electronic System Design Finite State Machine

Nurul Hazlina 103

State Table for Combination Lock

• Finite-State Machine

– Refine state diagram to take internal structure into account

– State table ready for encoding

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed

0 1 1 S1 S2 C2 closed
...
0 1 1 S3 OPEN – open
...

next

Electronic System Design Finite State Machine

Nurul Hazlina 104

Encodings for Combination Lock
• Encode state table

– State can be: S1, S2, S3, OPEN, or ERR

• Needs at least 3 bits to encode: 000, 001, 010, 011, 100

• And as many as 5: 00001, 00010, 00100, 01000, 10000

• Choose 4 bits: 0001, 0010, 0100, 1000, 0000

– Output mux can be: C1, C2, or C3

• Needs 2 to 3 bits to encode

• Choose 3 bits: 001, 010, 100

– Output open/closed can be: open or closed

• Needs 1 or 2 bits to encode

• Choose 1 bit: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0

0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0
...
0 1 1 0100 1000 – 1
...

next

mux is identical to last 3 bits of state
open/closed is identical to first bit of state
therefore, we do not even need to implement
FFs to hold state, just use outputs

reset

open/closed

new

equal

controller

mux
control

clock

Electronic System Design Finite State Machine

Nurul Hazlina 105

Datapath Implementation for
Combination Lock

• Multiplexer

– Easy to implement as combinational logic when few inputs

– Logic can easily get too big for most PLDs

C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4

value

C1i C2i C3i

mux
control

value

equal

Electronic System Design Finite State Machine

Nurul Hazlina 106

Datapath Implementation (cont’d)

• Tri-State Logic

– Utilize a third output state: “no connection” or “float”

– Connect outputs together as long as only one is “enabled”

– Open-collector gates can
only output 0, not 1

• Can be used to implement
logical AND with only wires

C1 C2 C3

comparator
equal

multiplexer

mux
control

4

4 4 4

4

value

C1i C2i C3i

mux
control

value

equal

+ oc

open-collector connection
(zero whenever one connection is zero,

one otherwise – wired AND)

tri-state driver
(can disconnect

from output)

Electronic System Design Finite State Machine

Nurul Hazlina 107

Digital Combination Lock (New
Datapath)

• Decrease number of inputs

• Remove 3 code digits as inputs

– Use code registers

– Make them loadable from value

– Need 3 load signal inputs (net gain in input (4*3)–3=9)

• Could be done with 2 signals and decoder
(ld1, ld2, ld3, load none)

CS 150 - Fall 2000 - Introduction - 107

C1 C2 C3

comparator value
equal

multiplexer

mux
control

4

4 4 4

4

ld1 ld2 ld3

Electronic System Design Finite State Machine

Nurul Hazlina 108

Section Summary

• FSM Design

– Understanding the problem

– Generating state diagram

– Implementation using synthesis tools

– Iteration on design/specification to improve qualities of mapping

– Communicating state machines

• Four case studies

– Understand I/O behavior

– Draw diagrams

– Enumerate states for the "goal"

– Expand with error conditions

– Reuse states whenever possible

Electronic System Design Finite State Machine

Nurul Hazlina 109

FSM AND HDL

Electronic System Design Finite State Machine

Nurul Hazlina 110

Hardware Description Languages
and Sequential Logic

• Flip-flops

– representation of clocks - timing of state changes

– asynchronous vs. synchronous

• FSMs

– structural view (FFs separate from combinational logic)

– behavioral view (synthesis of sequencers – not in this course)

• Data-paths = data computation (e.g., ALUs, comparators) +
registers

– use of arithmetic/logical operators

– control of storage elements

Electronic System Design Finite State Machine

Nurul Hazlina 111

Example: reduce-1-string-by-1

• Remove one 1 from every string of 1s on the input

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

1/0 0/0

0/0

1/1

zero
[0]

one1
[0]

Moore Mealy

Electronic System Design Finite State Machine

Nurul Hazlina 112

module reduce (clk, reset, in, out);

 input clk, reset, in;

 output out;

 parameter zero = 2’b00;

 parameter one1 = 2’b01;

 parameter two1s = 2’b10;

 reg out;

 reg [2:1] state; // state variables

 reg [2:1] next_state;

 always @(posedge clk)

 if (reset) state = zero;

 else state = next_state;

state assignment

(easy to change,

if in one place)

Verilog FSM - Reduce 1s example

• Moore machine

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

Electronic System Design Finite State Machine

Nurul Hazlina 113

 always @(in or state)

 case (state)

 zero:

 // last input was a zero

 begin

 if (in) next_state = one1;

 else next_state = zero;

 end

 one1:

 // we've seen one 1

 begin

 if (in) next_state = two1s;

 else next_state = zero;

 end

 two1s:

 // we've seen at least 2 ones

 begin

 if (in) next_state = two1s;

 else next_state = zero;

 end

 endcase

crucial to include

all signals that are

input to state determination

Moore Verilog FSM (cont’d)

note that output

depends only on state

 always @(state)

 case (state)

 zero: out = 0;

 one1: out = 0;

 two1s: out = 1;

 endcase

endmodule

Electronic System Design Finite State Machine

Nurul Hazlina 114

module reduce (clk, reset, in, out);

 input clk, reset, in;

 output out;

 reg out;

 reg state; // state variables

 reg next_state;

 always @(posedge clk)

 if (reset) state = zero;

 else state = next_state;

 always @(in or state)

 case (state)

 zero: // last input was a zero

 begin

 out = 0;

 if (in) next_state = one;

 else next_state = zero;

 end

 one: // we've seen one 1

 if (in) begin

 next_state = one; out = 1;

 end else begin

 next_state = zero; out = 0;

 end

 endcase

endmodule

Mealy Verilog FSM

1/0 0/0

0/0

1/1

zero
[0]

one1
[0]

Electronic System Design Finite State Machine

Nurul Hazlina 115

module reduce (clk, reset, in, out);

 input clk, reset, in;

 output out;

 reg out;

 reg state; // state variables

 always @(posedge clk)

 if (reset) state = zero;

 else

 case (state)

 zero: // last input was a zero

 begin

 out = 0;

 if (in) state = one;

 else state = zero;

 end

 one: // we've seen one 1

 if (in) begin

 state = one; out = 1;

 end else begin

 state = zero; out = 0;

 end

 endcase

endmodule

Synchronous Mealy Machine

