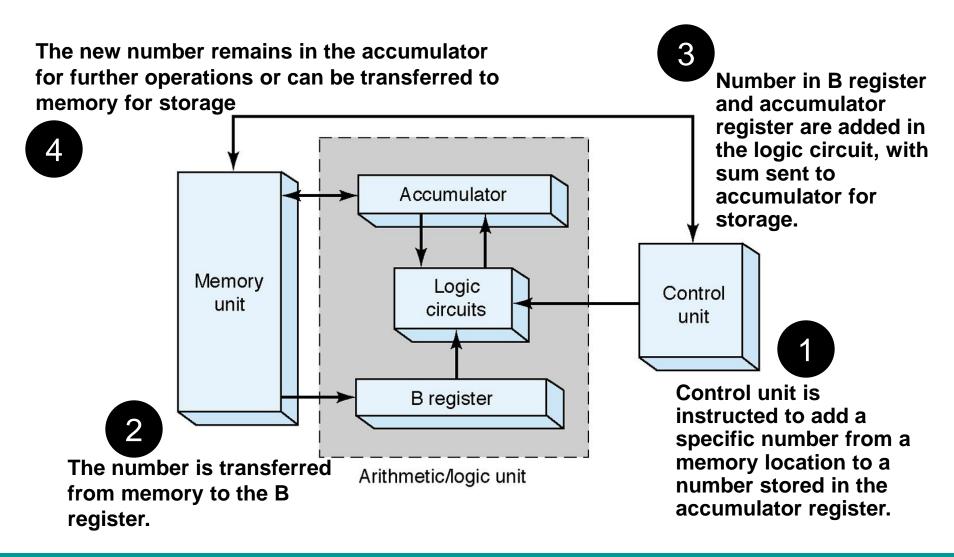
Arithmetic Circuits

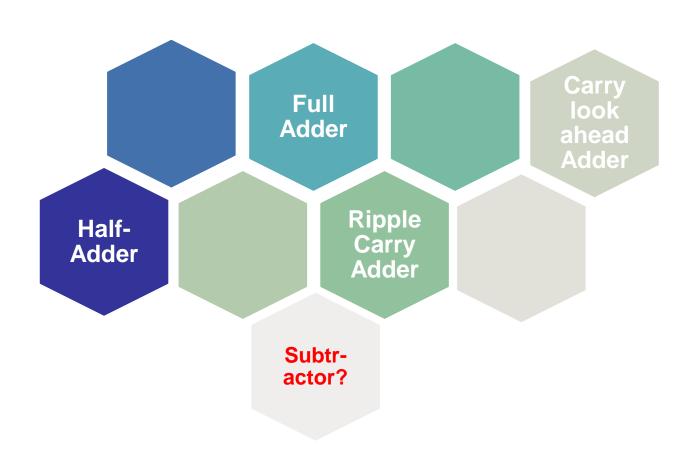
- 1. Adder
- 2. Multiplier
- 3. Arithmetic Logic Unit (ALU)
 - 4. HDL for Arithmetic Circuit

Introduction

- 1. Digital circuits are frequently used for arithmetic operations
- 2. Fundamental arithmetic operations on binary numbers and digital circuits which perform arithmetic operations will be examined.
- 3. HDL will be used to describe arithmetic circuits.
- 4. An arithmetic/logic unit (ALU) accepts data stored in memory and executes arithmetic and logic operations as instructed by the control unit.

Arithmetic Circuits





Typical binary addition process



Nurul Hazlina

Half Adder

Χ	Y	С	S
0	0	0	0
0	1		1
1	0	Õ	1
1	1	1	0

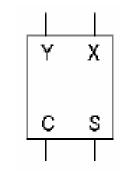
Half Adder equation

$$C = XY$$

$$S = X'Y + XY'$$

$$= X \oplus Y$$

 \mathcal{C}



Full Adder

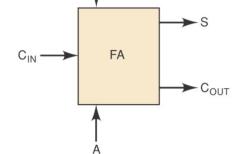
Augend bit input	Addend bit input	Carry bit input		Sum bit output	Carry bit output
А	В	C _{IN}		S	C _{OUT}
0	0	0		0	0
0	0	1		1	0
0	1	0		1	0
0	1	1		0	1
1	0	0		1	0
1	0	1		0	1
1	1	0		0	1
1	1	1		1	1
	1 1	1	0		
	1	0	1	1	
	+ 1	1	1	0	
	1 1	0	0	1	

$$S = \Sigma m(1,2,4,7)$$

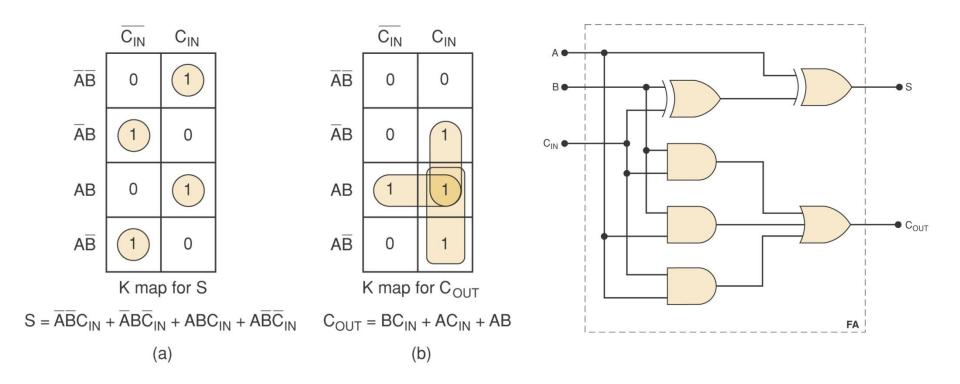
= X'Y'C_{in} + X'YC_i' + XY'C_i' + XYC_{in}
= X'(Y'C_{in} + YC_{in}') + X(Y'C_{in}' + YC_{in})
= X'(Y \oplus C_{in}) + X(Y \oplus C_{in})'
= X \oplus Y \oplus C_{in}

$$C_{out} = \Sigma m(3,5,6,7)$$

= X'YC_{in} + XY'C_{in} + XYC_{in}' + XYC_{in}
= (X'Y + XY')C_{in} + XY(C_{in}' + C_{in})
= (X \overline Y)C_{in} + XY

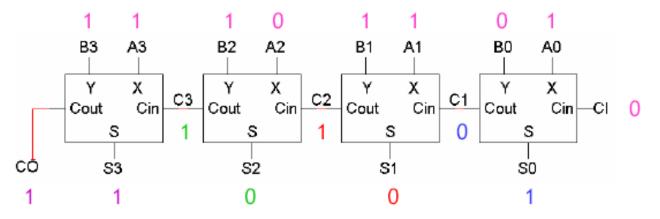


Full-adder-K map, Complete circuitry

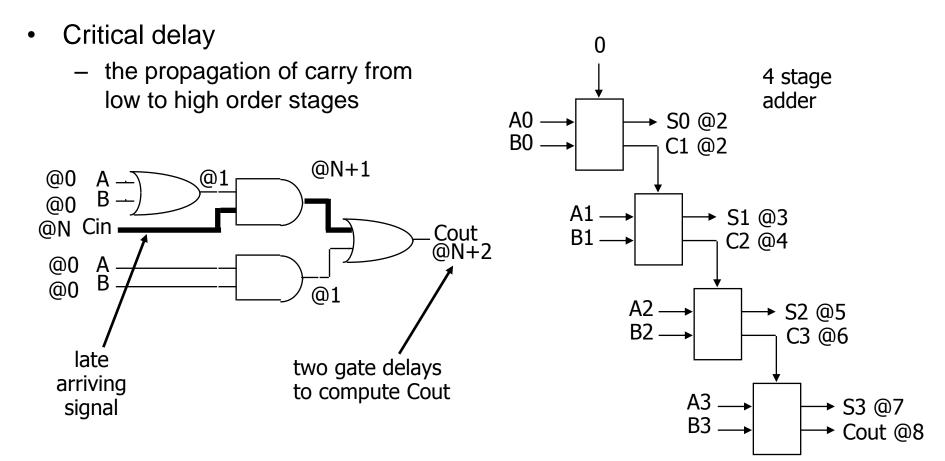


Ripple Carry Adder

- This is called a ripple carry adder, because the inputs A0, B0 and CI "ripple" leftwards until CO and S3 are produced.
- Ripple carry adders are slow!
 - There is a very long path from A0, B0 and CI to CO and S3.
 - For an *n*-bit ripple carry adder, the longest path has 2*n*+1 gates.
 - The longest path in a 64-bit adder would include 129 gates!

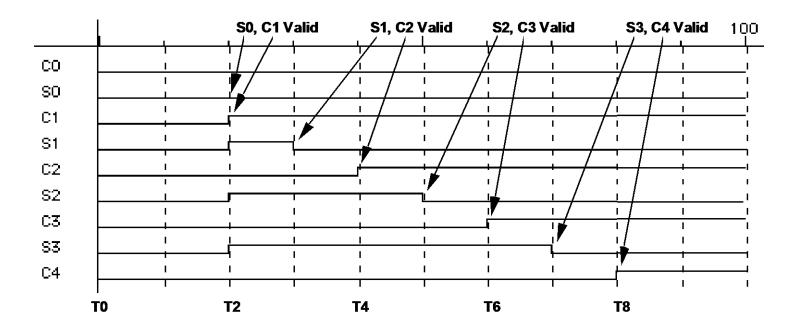


Ripple-carry adders



Ripple-carry adders (cont'd)

- Critical delay
 - the propagation of carry from low to high order stages
 - 1111 + 0001 is the worst case addition
 - carry must propagate through all bits



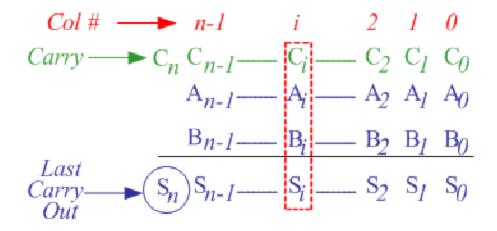
- Carry look-ahead solves this problem ٠ by calculating the carry signals in advance, based on the input signals.
- It is based on the fact that a carry signal will be generated in two ٠ cases:

(1) when both bits Ai and Bi are 1, or

(2) when one of the two bits is 1 and the carry-in (carry of the previous) stage) is 1.

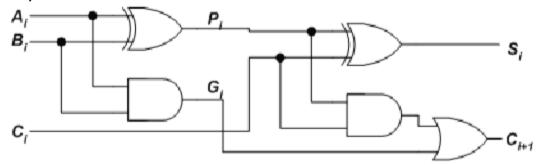
Carry look ahead adder

• To understand the carry propagation problem, let's consider the case of adding two n-bit numbers A and B.



Carry look ahead adder

The Figure shows the full adder circuit used to add the operand bits in the ith column; namely Ai & Bi and the carry bit coming from the previous column (Ci).



In this circuit, the 2 internal signals Pi and Gi are given by:

Pi = Ai ⊕ Bi(1)

G i = Ai B i.....(2)

The output sum and carry can be defined as :

Si = Pi \oplus Ci(3) C i +1 = G i + Pi C i(4)

Carry look ahead adder

- Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi=1, regardless of the input carry (Ci).
- Pi is known as the carry propagate signal since whenever Pi =1, the input carry is propagated to the output carry, i.e., Ci+1. = Ci (note that whenever Pi =1, Gi =0).
- Computing the values of Pi and Gi only depend on the input operand bits (Ai & Bi) as clear from the Figure and equations.
- Thus, these signals settle to their steady-state value after the propagation through their respective gates.
- Computed values of all the Pi's are valid one XOR-gate delay after the operands A and B are made valid.
- Computed values of all the Gi's are valid one AND-gate delay after the operands A and B are made valid.

Carry-lookahead logic

- Carry generate: Gi = Ai Bi
 - must generate carry when A = B = 1
- Carry propagate: Pi = Ai xor Bi
 - carry-in will equal carry-out here
- Sum and Cout can be re-expressed in terms of generate/propagate:
 - Si = Ai xor Bi xor Ci
 - = Pi xor Ci

-
$$Ci+1 = Ai Bi + Ai Ci + Bi Ci$$

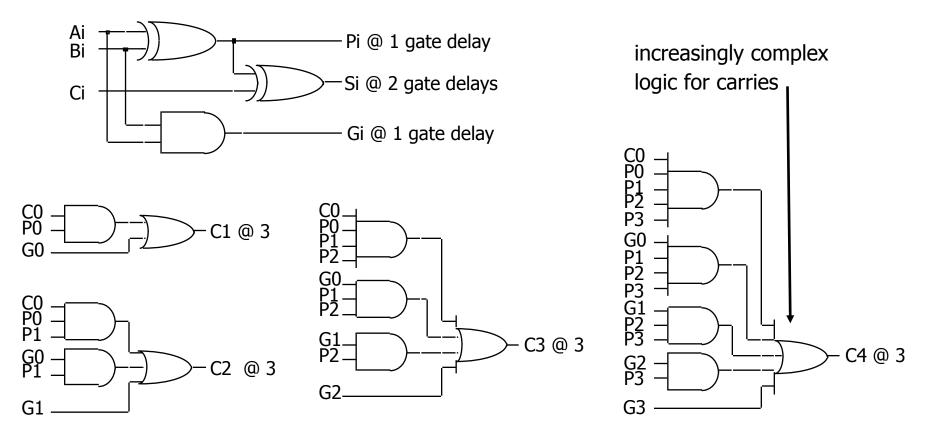
= $Ai Bi + Ci (Ai + Bi)$
= $Ai Bi + Ci (Ai xor Bi)$
= $Gi + Ci Pi$

Carry-lookahead logic (cont'd)

- Re-express the carry logic as follows:
 - C1 = G0 + P0 C0
 - C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0
 - C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
 - C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0
 + P3 P2 P1 P0 C0
- Each of the carry equations can be implemented with two-level logic
 - all inputs are now directly derived from data inputs and not from intermediate carries
 - this allows computation of all sum outputs to proceed in parallel

Carry-lookahead implementation

Adder with propagate and generate outputs

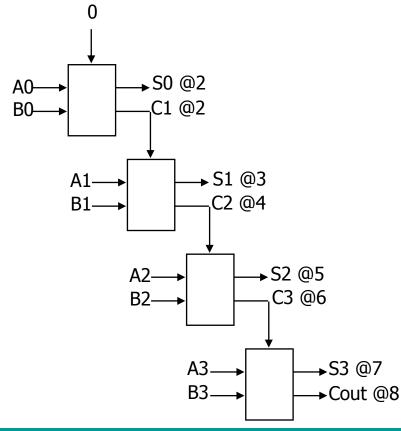


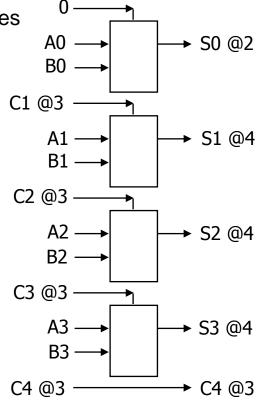
Electronic System Design

Arithmetic Circuits

Carry-lookahead implementation (cont'd)

- Carry-lookahead logic generates individual carries
 - sums computed much more quickly in parallel
 - however, cost of carry logic increases with more stages

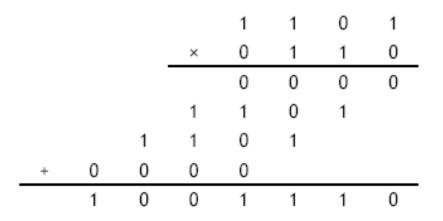




MULTIPLIER

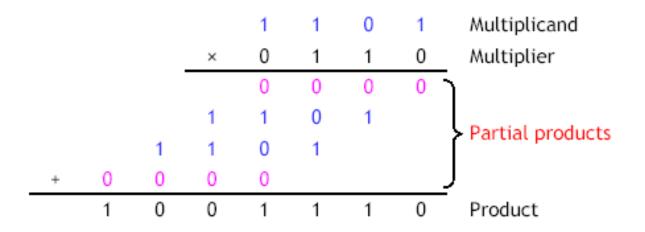
Multiplication

- Multiplication can't be that hard! It's just repeated addition, so if we have adders, we should be able to do multiplication also.
- Here's an example of binary multiplication



Binary Multiplication

- Since we always multiply by either 0 or 1, the partial products are always either 0000 or the multiplicand (1101 in this example).
- There are four partial products which are added to form the result.
 - We can add them in pairs, using three adders.
 - The product can have up to 8 bits, but we can use four-bit adders if we stagger them leftwards, like the partial products themselves.



2X2 Binary Multiplication

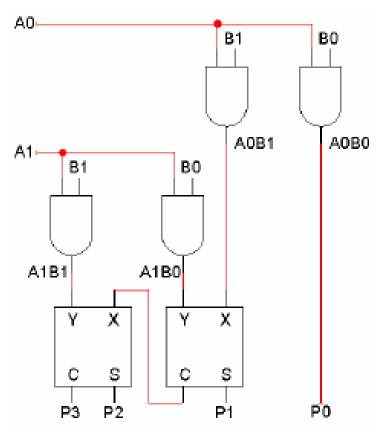
• Here is an outline of multiplying the two-bit numbers A1A0 and B1B0, to produce the four-bit product P3-P0.

			B1	В0
		×	A1	A0
			A0B1	A0B0
+		A1B1	A1B0	
	D2	P2	D1	P0

- The bits of each partial product are computed by multiplying two bits of the input.
- Since two-bit multiplication is the same as the logical AND operation, we can use AND gates to generate the partial products.

2X2 Binary Multiplication

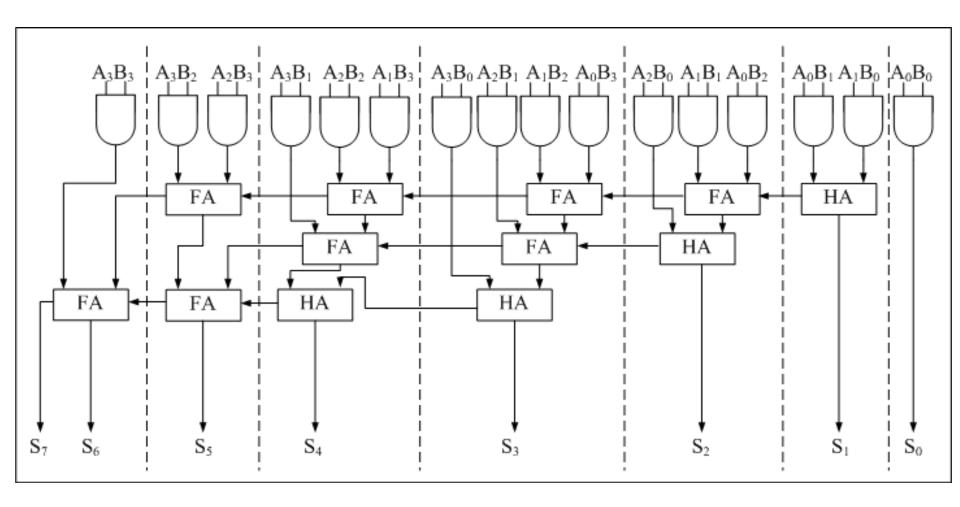
- Here is a circuit that multiplies the two-bit numbers A1A0 and B1B0, resulting in the four-bit product P3-P0.
- For a 2x2 multiplier we can just use two half adders to sum the partial products. In general, though, we'll need full adders.
- The diagram on the next page shows how this can be extended to a four-bit multiplier, taking inputs A3-A0 and B3-B0 and outputting the product P7-P0.



Electronic System Design

Arithmetic Circuits

A 4×4 binary multiplier

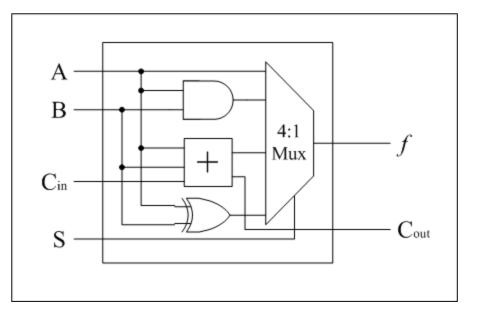


Complexity of multiplication circuits

- In general, when multiplying an *m*-bit number by an *n*-bit number:
 - There will be *n* partial products, one for each bit of the multiplier.
 - This requires *n*-1 adders, each of which can add *m* bits.
- The circuit for 32-bit or 64-bit multiplication would be huge!

ARITHMETIC LOGIC UNIT

A 1-Bit ALU



Operation S1 S0	Function
0 0	А
0 1	A•B
1 0	A + B
1 1	A XOR B

> The multiplexer selects either

 $A, A \bullet B, A + B \text{ or } A XOR B$

depending on whether the value of operation, S is 00, 01, 10 or 11.

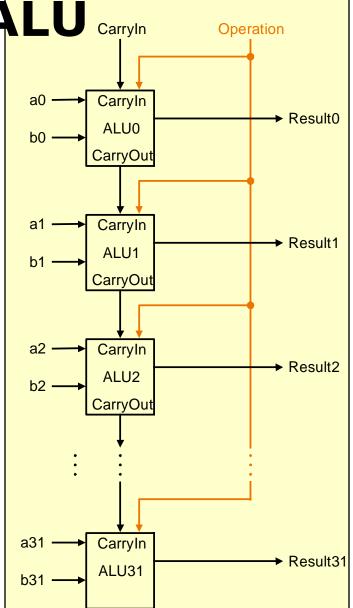
> To add an operation, the multiplexer has to be expanded

A 32-Bit ALU

- A full 32-bit ALU can be created by connecting adjacent 1-bit ALU's
- using the Carry in and carry out lines
- The carry out of the least significant bit can ripple all the way through the adder (*ripple carry adder*)
- Ripple carry adders are slow since the carry propagates from a unit to the next sequentially
- Subtraction can be performed by inverting the operand and setting the "CarryIn" input for the whole adder to 1 (i.e. using two's complement)

A 32-Bit ALU Carryln

- A full 32-bit ALU can be created by connecting adjacent 1-bit ALU's using the Carry in and carry out lines
- 2. The carry out of the least significant bit
- 3. can ripple all the way through the adder (*ripple carry adder*)
- 4. Ripple carry adders are slow since the carry propagates from a unit to the next sequentially
- Subtraction can be performed by inverting the operand and setting the "CarryIn" input for the whole adder to 1
- 6. (i.e. using two's complement)



Summary

- Adder and multiplier circuits reflect human algorithms for addition and multiplication.
- Adders and multipliers are built hierarchically.
 - We start with half adders and full adders and work our way up.
 - Building these circuits from scratch using truth tables and K-maps would be pretty difficult.
- Adder circuits are limited in the number of bits that can be handled. An overflow occurs when a result exceeds this limit.
- There is a tradeoff between simple but slow ripple carry adders and more complex but faster carry lookahead adders.
- Multiplying and dividing by powers of two can be done with simple shifts.

HARDWARE DESCRIPTION LANGUAGE

Design of a Half Adder (halfadd)

Behavioural

LIBRARY ieee USE ieee.std_logis_1164.all

ENTITY halfadd IS

Port (A, B: INSTD_LOGIC;sum, Cout: OUTSTD_LOGIC);

END HA;

ARCHITECTURE behavioural OF halfadd IS BEGIN Cout <= A AND B; sum <= A XOR B; END behavioural;

Design of Full Adder (fulladd)

Behavioural

LIBRARY ieee ;

USE ieee.std_logic_1164.all;

ENTITY fulladd IS

 PORT (
 Cin, x, y
 : IN
 STD_LOGIC ;

 s, Cout
 : OUT
 STD_LOGIC) ;

END fulladd ;

```
ARCHITECTURE Behavioural OF fulladd IS
BEGIN
```

s <= x XOR y XOR Cin ; Cout <= (x AND y) OR (Cin AND x) OR (Cin AND y) ; END Behavioural ;

Design of Full Adder (FA)

• Structural (use halfadd)

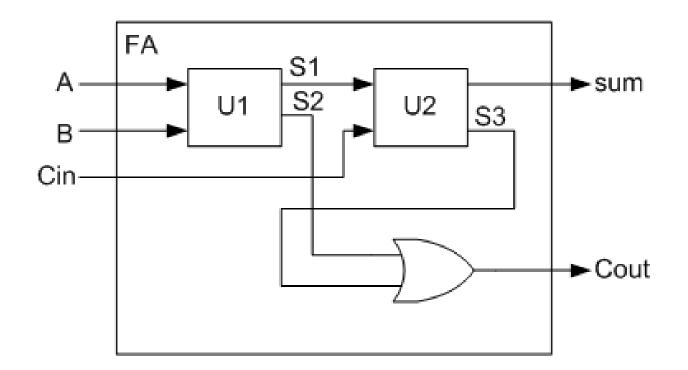
```
ENTITY FA IS
               A, B, Cin : IN
      PORT (
                                   STD_LOGIC;
                sum, Cout : OUT
                                    STD_LOGIC );
END FA;
ARCHITECTURE Structural OF FA IS
signal S1, S2, S3 : STD_LOGIC;
COMPONENT halfadd
      Port (
               A, B
                         : IN
                                   STD_LOGIC;
                sum. Cout : OUT
                                   STD LOGIC);
BEGIN
      U1 : halfadd
                          PORTMAP ( A, B, S1, S2);
      U2 : halfadd
                          PORTMAP (S1, Cin, Sum, S3);
```

Cout \leq S2 OR S3;

END LogicFunc;

Design of Full Adder (FA)

• Structural (use halfadd)



Design a 4-bit adder

LIBRARY ieee ; USE ieee.std_logic_1164.all ;		ARCHITECTURE Structure OF adder4 IS SIGNAL c1, c2, c3 : STD_LOGIC ; COMPONENT fulladd PORT (Cin, x, y : IN
ENTITY adder4 IS		STD_LOGIC ;
PORT (Cin : IN STD_LO x3, x2, x1, x0 STD_LOGIC ; y3, y2, y1, y0 STD_LOGIC ; s3, s2, s1, s0 STD_LOGIC ;	DGIC ; : IN : IN : OUT	s, Cout : OUT STD_LOGIC) ; END COMPONENT ; BEGIN stage0: fulladd PORT MAP (Cin, x0, y0, s0, c1) ; stage1: fulladd PORT MAP (c1, x1, y1, s1, c2) ;
Cout STD_LOGIC);	: OUT	stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ;
END adder4 ;		stage3: fulladd PORT MAP (Cin => c3, Cout => Cout, x => x3, y => y3, s => s3);

END Structure ;

Design a 4-bit adder (using Package)

LIBRARY ieee ; USE ieee.std_logic_1164.all ; USE work.fulladd_package.all ;

ENTITY adder4 IS

PORT (Cin

	: IN	STD_LOO	GIC ;
x3, x2, x1, x0	: IN	STD_LOO	GIC ;
y3, y2, y1, y0	: IN	STD_LOO	GIC ;
s3, s2, s1, s0	: OUT	STD_LOO	GIC ;
Cout		: OUT	STD_LOGIC) ;

END adder4;

ARCHITECTURE Structure OF adder4 IS SIGNAL c1, c2, c3 : STD_LOGIC ; BEGIN stage0: fulladd PORT MAP (Cin, x0, y0, s0, c1) ; stage1: fulladd PORT MAP (c1, x1, y1, s1, c2) ; stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ; stage3: fulladd PORT MAP (Cin => c3, Cout => Cout, x => x3, y => y3, s => s3) ; END Structure ;

Design a 4-bit adder

• Fulladd package

LIBRARY ieee ; USE ieee.std_logic_1164.all ;

PACKAGE fulladd_package IS COMPONENT fulladd PORT (Cin, x, y : IN STD_LOGIC ; s, Cout : OUT STD_LOGIC) ; END COMPONENT ; END fulladd_package ;

NurulHazlina/BEE2243/A.Circuit

Designing ALU

• Functionality ALU

	Inputs	Outputs
Operation	S2S1S0	F
Clear	000	0000
B-A	001	B – A
A – B	010	A – B
ADD	011	A + B
XOR	100	A XOR B
OR	101	A OR B
AND	110	A AND B
Preset	111	1111

Designing ALU

LIBRARY ieee ; USE ieee.std_logic_1164.all ; USE ieee.std_logic_unsigned.all ;

ENTITY alu IS PORT (s : IN STD_LOGIC_VECTOR(2 DOWNTO 0) ;

A, B : IN STD_LOGIC_VECTOR(3 DOWNTO 0) ;

F : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)) ;

END alu ;

ARCHITECTURE Behavior OF alu IS BEGIN

PROCESS (s, A, B) BEGIN CASE s IS

WHEN "000" => <= "0000" : WHEN "001" => F <= B - A : WHEN "010" => F <= A - B : WHEN "011" => F <= A + B : WHEN "100" => $F \leq A XOR B$; WHEN "101" => $F \leq A OR B$: WHEN "110" => $F \leq A AND B$: WHEN OTHERS => F <= "1111" ; END CASE : END PROCESS : END Behavior :