
Electronic System Design Arithmetic Circuits

Nurul Hazlina 1

Arithmetic Circuits

1. Adder

2. Multiplier

3. Arithmetic Logic Unit (ALU)

4. HDL for Arithmetic Circuit

Electronic System Design Arithmetic Circuits

Nurul Hazlina 2

Introduction

1. Digital circuits are frequently used for arithmetic

operations

2. Fundamental arithmetic operations on binary numbers

and digital circuits which perform arithmetic operations

will be examined.

3. HDL will be used to describe arithmetic circuits.

4. An arithmetic/logic unit (ALU) accepts data stored in

memory and executes arithmetic and logic operations as

instructed by the control unit.

Electronic System Design Arithmetic Circuits

Nurul Hazlina 3

Arithmetic Circuits

Control unit is
instructed to add a
specific number from a
memory location to a
number stored in the
accumulator register.

The number is transferred

from memory to the B

register.

1

2

3 The new number remains in the accumulator

for further operations or can be transferred to

memory for storage

4

Number in B register
and accumulator
register are added in
the logic circuit, with
sum sent to
accumulator for
storage.

Electronic System Design Arithmetic Circuits

Nurul Hazlina 4

Adder

Half-
Adder

Full
Adder

Ripple
Carry
Adder

Carry
look

ahead
Adder

Subtr-
actor?

Electronic System Design Arithmetic Circuits

Nurul Hazlina 5

Typical binary addition process

Electronic System Design Arithmetic Circuits

Nurul Hazlina 6

Half Adder

Half Adder equation

Electronic System Design Arithmetic Circuits

Nurul Hazlina 7

Full Adder

Electronic System Design Arithmetic Circuits

Nurul Hazlina 8

Full-adder-
K map, Complete circuitry

Electronic System Design Arithmetic Circuits

Nurul Hazlina 9

NurulHazlina/BEE2243/A.Circuit

Ripple Carry Adder

• This is called a ripple carry adder, because the inputs A0, B0 and CI

“ripple” leftwards until CO and S3 are produced.

• Ripple carry adders are slow!

– There is a very long path from A0, B0 and CI to CO and S3.

– For an n-bit ripple carry adder, the longest path has 2n+1 gates.

– The longest path in a 64-bit adder would include 129 gates!

Electronic System Design Arithmetic Circuits

Nurul Hazlina 10

A

A

B

B

Cin Cout

@0

@0

@0
@0

@N

@1

@1

@N+1

@N+2

late
arriving
signal

two gate delays
to compute Cout

4 stage
adder

A0
B0

0

S0 @2

A1
B1

C1 @2

S1 @3

A2
B2

C2 @4

S2 @5

A3
B3

C3 @6

S3 @7
Cout @8

Ripple-carry adders

• Critical delay

– the propagation of carry from

low to high order stages

Electronic System Design Arithmetic Circuits

Nurul Hazlina 11

Ripple-carry adders (cont’d)

• Critical delay

– the propagation of carry from low to high order stages

– 1111 + 0001 is the worst case addition

– carry must propagate through all bits

Electronic System Design Arithmetic Circuits

Nurul Hazlina 12

Carry Look-ahead
Adder

• Carry look-ahead solves this problem

 by calculating the carry signals in advance, based on the input

signals.

• It is based on the fact that a carry signal will be generated in two

cases:

(1) when both bits Ai and Bi are 1, or

(2) when one of the two bits is 1 and the carry-in (carry of the previous

stage) is 1.

Electronic System Design Arithmetic Circuits

Nurul Hazlina 13

• To understand the carry propagation problem, let’s

consider the case of adding two n-bit numbers A and B.

Carry look ahead adder

Electronic System Design Arithmetic Circuits

Nurul Hazlina 14

Carry look ahead adder

The Figure shows the full adder circuit used to add the operand bits

in the ith column; namely Ai & Bi and the carry bit coming from

the previous column (Ci).

In this circuit, the 2 internal signals Pi and Gi are given by:

Pi = Ai ⊕ Bi ……………………..(1)

G i = Ai B i……………….……(2)

The output sum and carry can be defined as :

Si = Pi ⊕ Ci ……………………(3)

C i +1 = G i + Pi C i …………(4)

Electronic System Design Arithmetic Circuits

Nurul Hazlina 15

• Gi is known as the carry Generate signal since a carry (Ci+1) is generated

whenever Gi=1, regardless of the input carry (Ci).

• Pi is known as the carry propagate signal since whenever Pi =1, the input carry is

 propagated to the output carry, i.e., Ci+1. = Ci (note that whenever Pi =1, Gi =0).

• Computing the values of Pi and Gi only depend on the input operand bits (Ai &

Bi) as clear from the Figure and equations.

• Thus, these signals settle to their steady-state value after the propagation

through their respective gates.

• Computed values of all the Pi’s are valid one XOR-gate delay after the operands

A and B are made valid.

• Computed values of all the Gi’s are valid one AND-gate delay after the operands

A and B are made valid.

Carry look ahead adder

Electronic System Design Arithmetic Circuits

Nurul Hazlina 16

Carry-lookahead logic

• Carry generate: Gi = Ai Bi

– must generate carry when A = B = 1

• Carry propagate: Pi = Ai xor Bi

– carry-in will equal carry-out here

• Sum and Cout can be re-expressed in terms of

generate/propagate:

– Si = Ai xor Bi xor Ci

 = Pi xor Ci

– Ci+1 = Ai Bi + Ai Ci + Bi Ci

 = Ai Bi + Ci (Ai + Bi)

 = Ai Bi + Ci (Ai xor Bi)

 = Gi + Ci Pi

Electronic System Design Arithmetic Circuits

Nurul Hazlina 17

Carry-lookahead logic (cont’d)

• Re-express the carry logic as follows:

– C1 = G0 + P0 C0

– C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

– C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

– C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0

 + P3 P2 P1 P0 C0

• Each of the carry equations can be implemented with two-level logic

– all inputs are now directly derived from data inputs and not from

intermediate carries

– this allows computation of all sum outputs to proceed in parallel

Electronic System Design Arithmetic Circuits

Nurul Hazlina 18

G3

C0

C0

C0

C0

P0

P0

P0

P0
G0

G0

G0

G0
C1 @ 3

P1

P1

P1

P1

P1

P1

G1

G1

G1

C2 @ 3

P2

P2

P2

P2

P2

P2

G2

G2

C3 @ 3

P3

P3

P3

P3

C4 @ 3

Pi @ 1 gate delay

Ci
Si @ 2 gate delays

Bi
Ai

Gi @ 1 gate delay

increasingly complex

logic for carries

Carry-lookahead
implementation

• Adder with propagate and generate outputs

Electronic System Design Arithmetic Circuits

Nurul Hazlina 19

A0
B0

0

S0 @2

A1

B1

C1 @2

S1 @3

A2

B2

C2 @4

S2 @5

A3

B3

C3 @6

S3 @7

Cout @8

A0

B0

0

S0 @2

A1
B1

C1 @3

S1 @4

A2

B2

C2 @3

S2 @4

A3

B3

C3 @3

S3 @4

C4 @3 C4 @3

Carry-lookahead
implementation (cont’d)

• Carry-lookahead logic generates individual carries

– sums computed much more quickly in parallel

– however, cost of carry logic increases with more stages

Electronic System Design Arithmetic Circuits

Nurul Hazlina 20

MULTIPLIER

Electronic System Design Arithmetic Circuits

Nurul Hazlina 21

Multiplication

• Multiplication can’t be that hard! It’s just repeated
addition, so if we have adders, we should be able to do
multiplication also.

• Here’s an example of binary multiplication

Electronic System Design Arithmetic Circuits

Nurul Hazlina 22

Binary Multiplication

• Since we always multiply by either 0 or 1, the partial products are
always either 0000 or the multiplicand (1101 in this example).

• There are four partial products which are added to form the result.

– We can add them in pairs, using three adders.

– The product can have up to 8 bits, but we can use four-bit
adders if we stagger them leftwards, like the partial products
themselves.

Electronic System Design Arithmetic Circuits

Nurul Hazlina 23

2X2 Binary Multiplication

• Here is an outline of multiplying the two-bit numbers A1A0 and B1B0,
to produce the four-bit product P3-P0.

• The bits of each partial product are computed by multiplying two bits of
the input.

• Since two-bit multiplication is the same as the logical AND operation,
we can use AND gates to generate the partial products.

Electronic System Design Arithmetic Circuits

Nurul Hazlina 24

2X2 Binary Multiplication

• Here is a circuit that multiplies the

two-bit numbers A1A0 and B1B0,

resulting in the four-bit product P3-

P0.

• For a 2×2 multiplier we can just

use two half adders to sum the

partial products. In general,

though, we’ll need full adders.

• The diagram on the next page

shows how this can be extended to

a four-bit multiplier, taking inputs

A3-A0 and B3-B0 and outputting

the product P7-P0.

Electronic System Design Arithmetic Circuits

Nurul Hazlina 25

A 4×4 binary multiplier

Electronic System Design Arithmetic Circuits

Nurul Hazlina 26

Complexity of multiplication
circuits

• In general, when multiplying an m-bit number by an n-bit

number:

– There will be n partial products, one for each bit of the

multiplier.

– This requires n-1 adders, each of which can add m bits.

• The circuit for 32-bit or 64-bit multiplication would be huge!

Electronic System Design Arithmetic Circuits

Nurul Hazlina 27

ARITHMETIC LOGIC UNIT

Electronic System Design Arithmetic Circuits

Nurul Hazlina 28

A 1-Bit ALU

 The multiplexer selects either

 A, A•B, A + B or A XOR B

depending on whether the value of operation, S is 00, 01, 10 or 11.

 To add an operation, the multiplexer has to be expanded

Operation

S1 S0

Function

0 0 A

0 1 A•B

1 0 A + B

1 1 A XOR B

Electronic System Design Arithmetic Circuits

Nurul Hazlina 29

A 32-Bit ALU

• A full 32-bit ALU can be created by connecting adjacent 1-bit

ALU’s

• using the Carry in and carry out lines

• The carry out of the least significant bit can ripple all the way

through the adder (ripple carry adder)

• Ripple carry adders are slow since the carry propagates from a

unit to the next sequentially

• Subtraction can be performed by inverting the operand and

setting the “CarryIn” input for the whole adder to 1 (i.e. using

two’s complement)

Electronic System Design Arithmetic Circuits

Nurul Hazlina 30

A 32-Bit ALU

Result31

a31

b31

Result0

CarryIn

a0

b0

Result1

a1

b1

Result2

a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

1. A full 32-bit ALU can be created by

connecting adjacent 1-bit ALU’s using

the Carry in and carry out lines

2. The carry out of the least significant bit

3. can ripple all the way through the adder

(ripple carry adder)

4. Ripple carry adders are slow since the

carry propagates from a unit to the

next sequentially

5. Subtraction can be performed by

inverting the operand and setting the

“CarryIn” input for the whole adder to 1

6. (i.e. using two’s complement)

Electronic System Design Arithmetic Circuits

Nurul Hazlina 31

Summary

• Adder and multiplier circuits reflect human algorithms for addition and
multiplication.

• Adders and multipliers are built hierarchically.

– We start with half adders and full adders and work our way up.

– Building these circuits from scratch using truth tables and K-maps
would be pretty difficult.

• Adder circuits are limited in the number of bits that can be handled. An
overflow occurs when a result exceeds this limit.

• There is a tradeoff between simple but slow ripple carry adders and
more complex but faster carry lookahead adders.

• Multiplying and dividing by powers of two can be done with simple
shifts.

Electronic System Design Arithmetic Circuits

Nurul Hazlina 32

HARDWARE DESCRIPTION
LANGUAGE

Electronic System Design Arithmetic Circuits

Nurul Hazlina 33

Design of a Half Adder (halfadd)

• Behavioural
LIBRARY ieee

USE ieee.std_logis_1164.all

ENTITY halfadd IS

 Port (A, B : IN STD_LOGIC;

 sum, Cout : OUT STD_LOGIC);

END HA;

ARCHITECTURE behavioural OF halfadd IS

BEGIN

 Cout <= A AND B;

 sum <= A XOR B;

END behavioural;

Electronic System Design Arithmetic Circuits

Nurul Hazlina 34

Design of Full Adder (fulladd)

• Behavioural

 LIBRARY ieee ;

 USE ieee.std_logic_1164.all ;

 ENTITY fulladd IS

 PORT (Cin, x, y : IN STD_LOGIC ;

 s, Cout : OUT STD_LOGIC) ;

 END fulladd ;

 ARCHITECTURE Behavioural OF fulladd IS

 BEGIN

 s <= x XOR y XOR Cin ;

 Cout <= (x AND y) OR (Cin AND x) OR (Cin AND y) ;

 END Behavioural ;

Electronic System Design Arithmetic Circuits

Nurul Hazlina 35

Design of Full Adder (FA)

• Structural (use halfadd)
 ENTITY FA IS

 PORT (A, B, Cin : IN STD_LOGIC ;

 sum, Cout : OUT STD_LOGIC) ;

 END FA;

 ARCHITECTURE Structural OF FA IS

 signal S1, S2, S3 : STD_LOGIC;

 COMPONENT halfadd

 Port (A, B : IN STD_LOGIC;

 sum, Cout : OUT STD_LOGIC);

 BEGIN

 U1 : halfadd PORTMAP (A, B, S1, S2);

 U2 : halfadd PORTMAP (S1, Cin, Sum, S3);

 Cout <= S2 OR S3;

 END LogicFunc ;

Electronic System Design Arithmetic Circuits

Nurul Hazlina 36

Design of Full Adder (FA)

• Structural (use halfadd)

Electronic System Design Arithmetic Circuits

Nurul Hazlina 37

Design a 4-bit adder

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY adder4 IS

 PORT (Cin

 : IN STD_LOGIC ;

 x3, x2, x1, x0 : IN

 STD_LOGIC ;

 y3, y2, y1, y0 : IN

 STD_LOGIC ;

 s3, s2, s1, s0 : OUT

 STD_LOGIC ;

 Cout : OUT

 STD_LOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS

 SIGNAL c1, c2, c3 : STD_LOGIC ;

 COMPONENT fulladd

 PORT (Cin, x, y : IN

 STD_LOGIC ;

 s, Cout : OUT

 STD_LOGIC) ;

 END COMPONENT ;

BEGIN

 stage0: fulladd PORT MAP (Cin, x0, y0, s0,

c1) ;

 stage1: fulladd PORT MAP (c1, x1, y1, s1, c2

) ;

 stage2: fulladd PORT MAP (c2, x2, y2, s2, c3

) ;

 stage3: fulladd PORT MAP (

 Cin => c3, Cout => Cout, x => x3, y =>

y3, s => s3) ;

END Structure ;

Electronic System Design Arithmetic Circuits

Nurul Hazlina 38

Design a 4-bit adder (using
Package)

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE work.fulladd_package.all ;

ENTITY adder4 IS

 PORT (Cin : IN STD_LOGIC ;

 x3, x2, x1, x0 : IN STD_LOGIC ;

 y3, y2, y1, y0 : IN STD_LOGIC ;

 s3, s2, s1, s0 : OUT STD_LOGIC ;

 Cout : OUT STD_LOGIC) ;

END adder4 ;

ARCHITECTURE Structure OF adder4 IS

 SIGNAL c1, c2, c3 : STD_LOGIC ;

BEGIN

 stage0: fulladd PORT MAP (Cin, x0, y0, s0, c1) ;

 stage1: fulladd PORT MAP (c1, x1, y1, s1, c2) ;

 stage2: fulladd PORT MAP (c2, x2, y2, s2, c3) ;

 stage3: fulladd PORT MAP (

 Cin => c3, Cout => Cout, x => x3, y => y3, s => s3) ;

END Structure ;

Electronic System Design Arithmetic Circuits

Nurul Hazlina 39

Design a 4-bit adder

• Fulladd package
LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

PACKAGE fulladd_package IS

 COMPONENT fulladd

 PORT (Cin, x, y : IN STD_LOGIC ;

 s, Cout : OUT STD_LOGIC) ;

 END COMPONENT ;

END fulladd_package ;

NurulHazlina/BEE2243/A.Circuit

Electronic System Design Arithmetic Circuits

Nurul Hazlina 40

Designing ALU

• Functionality ALU

Inputs Outputs

Operation S2S1S0 F

Clear 000 0000

B – A 001 B – A

A – B 010 A – B

ADD 011 A + B

XOR 100 A XOR B

OR 101 A OR B

AND 110 A AND B

Preset 111 1111

Electronic System Design Arithmetic Circuits

Nurul Hazlina 41

Designing ALU

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

USE ieee.std_logic_unsigned.all ;

ENTITY alu IS

 PORT (s : IN STD_LOGIC_VECTOR(2

DOWNTO 0) ;

 A, B : IN STD_LOGIC_VECTOR(3

DOWNTO 0) ;

 F : OUT STD_LOGIC_VECTOR(3

DOWNTO 0)) ;

END alu ;

ARCHITECTURE Behavior OF alu IS

BEGIN

 PROCESS (s, A, B)

 BEGIN

 CASE s IS

 WHEN "000" => F

<= "0000" ;

 WHEN "001" =>

 F <= B - A ;

 WHEN "010" =>

 F <= A - B ;

 WHEN "011" =>

 F <= A + B ;

 WHEN "100" =>

 F <= A XOR B ;

 WHEN "101" =>

 F <= A OR B ;

 WHEN "110" =>

 F <= A AND B ;

 WHEN OTHERS =>

 F <= "1111" ;

 END CASE ;

 END PROCESS ;

END Behavior ;

