

Faculty of Electrical & Electronics Engineering

BEE3233 Electronics System Design

Laboratory 1: FPGA Design of a 2-bit Multiplier

Mapping CO, PO, Domain, KI : CO2,PO3,P5,CTPS5

CO2: Construct logic circuit using HDL.[PO3, P5, CTPS3]

CO3: Design a digital system using combinational & sequential (medium scale

integrated logic) MSI component.

PO3: Identify, formulate and provide effective solution to engineering problem

P5: Complex Overt Response

CTPS3: Ability to get ideas and find alternative solutions

Learning Outcomes:
a) Getting familiar with Spartan 3E FPGA board.

b) Design the full adder schematic and Verilog using ISE, compile and simulate for

Xilinx Spartan FPGA

c) Develop a User Constraint File “ucf” that maps the input and output signals to the

Spartan 3E FPGA

d) Learn how to program the full Adder into the FPGA Spartan 3E board

e) Test the Results

f) Repeat the same process for Full Adder with Verilog instead of Schematic

g) Test your understanding by applying what you learned in programming a 4-bits

Adder/Subtractor

General Xilinx Tips

1. SAVE EARLY AND OFTEN (in your own memory device!!)

Xilinx is notorious for crashing at the most inopportune times. Do yourself a

favor and save.

2. At the end of a lab session (or any work session), archive your project using

the Xilinx utility (this will ensure you save everything), and save this zip

archive on your ENIAC drive or on a flash drive. Do NOT assume files will

remain on the lab computers or that “your” computer will be available at a

later time.

3. Make sure all components are connected. Loose wires are a frequent cause

of problems.

4. Try your hand at debugging first before calling me ☺. You will learn a lot by

struggling through problems that seem hard at first.

5. Read all instructions carefully before starting the lab. Often, there will be a

little detail that ends up being very important.

6. Make sure you test all important cases, particularly edge/corner cases. You

can be sure that your TA will test these as part of the demo.

Introduction – Getting to know FPGA Spartan-3E starter board

The Spartan-3E Starter Kit board is more advanced and complex compared to other

Spartan development boards. The advantage of this board is that it is programmed

through USB port. JTAG port is used to program previous versions. A list of the key

features and their location on the board is listed below:

Item 1: USB Connector

The board comes with power supply and

USB cable. The standard USB Type A/Type

B cable, similar to the one shown in Figure

1-2. The actual cable color might vary from

the picture.

The wider and narrower Type A connector

fits the USB connector at the back of the

computer. After installing the Xilinx

software, connect the square Type B

connector to the Spartan-3E Starter Kit

board, as shown. The USB connector is on

the left side of the board, immediately next

to the Ethernet connector. When the board

is powered on, the Windows

operating system should recognize and

install the associated driver software.

When the USB cable driver is successfully installed and the LED lights up, indicating

a good connection.

Item 2 Slide Switches

Locations and Labels

The Spartan-3E Starter Kit board has four

slide switches, as shown in Figure 1-3. The

slide switches are located in the lower

right corner

of the board and are labeled SW3 through

SW0. Switch SW3 is the left-most switch,

and SW0 is the right-most switch.

Operation

When in the UP or ON position, a switch

connects the FPGA pin to 3.3V, a logic High.

When DOWN or in the OFF position, the

switch connects the FPGA pin to ground, a

logic Low.

UCF Location Constraints

The UCF constraints for the four slide switches are listed below, including the I/O

pin assignment and the I/O standard used. The PULLUP resistor is not required, but

it defines the input value when the switch is in the middle of a transition. Verify the

location of the switches on the board.

NET "SW<0>" LOC = "L13" NET "SW<1>" LOC = "L14" NET "SW<2>" LOC = "H18"

NET "SW<3>" LOC = "N17"

Item 3 Push-Button Switches

Locations and Labels
The Spartan-3E Starter Kit board
has four momentary-contact push-

button switches, as shown. The

push buttons are located in the

lower left corner of the board and

are labeled BTN_NORTH,

BTN_EAST, BTN_SOUTH, and

BTN_WEST. The FPGA pins that

connect to the push buttons appear

in parentheses.

Operation

Pressing a push button connects the

associated FPGA pin to 3.3V, as

shown. Use an internal pull- down

resistor within the FPGA pin to

generate a logic Low when the

button is not pressed. shows how
to specify a pull-down resistor

within the UCF. There is no active

debouncing circuitry on the push

button.

UCF Location Constraints

These are the UCF constraints for the four push-button switches, including the I/O

pin assignment and the I/O

standard used, and defines a pull-down resistor on each input.

NET "BTN_EAST" LOC = "H13"

NET "BTN_NORTH" LOC = "V4" NET "BTN_SOUTH" LOC = "K17" NET "BTN_WEST"

LOC = "D18”

Item 3 Rotary Push-Button Switch

Locations and Labels
The rotary push-button switch is
located in the center

of the four individual push-button

switches, as shown. The switch

produces three outputs. The two shaft

encoder outputs are ROT_A and

ROT_B. The center push-button

switch is ROT_CENTER.

Operation

The rotary push-button switch

integrates two different functions.

The switch shaft rotates and outputs

values whenever the shaft turns. The

shaft can also be pressed, acting as a

push-button switch.

Push-Button Switch Pressing the

knob on the rotary/push-button

switch connects the associated

FPGA pin to 3.3V, as shown.

UCF Location Constraints

the UCF constraints for the four push-button switches, including the I/O pin

assignment and the I/O standard used, and defines a pull-down resistor on each

input.

NET "ROT_A" LOC = "K18" NET "ROT_B" LOC = "G18"

NET "ROT_CENTER" LOC = "V16"

Item 3 Discrete LEDs

Locations and Labels

The Spartan-3E Starter Kit board has

eight individual surface-mount LEDs

located above the slide switches as

shown. The LEDs are labeled LED7

through LED0.

LED7 is the left-most LED, LED0 the

right-most LED.

Operation

Each LED has one side connected to

ground and the other side connected to a

pin on the Spartan-3E device via a

390Ωcurrent limiting resistor. To light

an individual LED, drive the associated

FPGA control signal High.

UCF Location Constraints

The UCF constraints for the four push-button switches, including the I/O pin

assignment, the I/O standard used,

the output slew rate, and the output drive current.

NET "LED<7>" LOC = "F9" NET "LED<6>" LOC = "E9" NET "LED<5>" LOC = "D11"

NET "LED<4>" LOC = "C11" NET "LED<3>" LOC = "F11" NET "LED<2>" LOC = "E11"

NET "LED<1>" LOC = "E12" NET "LED<0>" LOC = "F12"

Please refer the reference manual for any additional information:

http://www.digilentinc.com/Products/Detail.cfm?Prod=S3EBOARD&Nav1=Product

s&Nav2=Programmable

Part 1 – Implement Full Adder schematic for Spartan 3E FPGA

board:

1. set up a project correctly to reflect Spartan 3 FPGA board

• Select Start

• All Programs

• Xilinx

• Project Navigator

2. Create a new project by selecting:

File from the main menu

New Project

• In the New Project window, name your project Full_Adder in the project

name text box.

• In the Project Location selection box, enter the folder or directory

• where your project will be saved. Use your name as for Student_Name and

locate the place where you want to save all your files (i.e C:\)

• Under Top-Level Source Type, select Schematic and click Next as shown in

figure 1-3

3. We will design our full adder for a particular device “Spartan 3E FPGA”.

• Product Category: General Purpose

• Device Family: Choose Spartan 3E, the device we will be using.

• Device: XC3500E, the specific Spartan 3E device we use. This is actually

printed (very small) on the FPGA core.

• Package: FG320, this is the package type of our device (Ball Grid Array, 320

pins)

• Speed Grade: The speed grade for this device is -4.

4. Select New Source and create a schematic source file by simply selecting

Next> and later this window will allow us to add existing files.

5. Just review the information listed in the figure and make sure it matches the

information in the window

Then click Finish to complete process and verify the file name and type. Click Next

once again to proceed and finish.

Section A –Creating the Schematic of a Full Adder

1. Create the circuit of Full Adder. Please refer to simulation lab 1 for more details.

Attach input and output pins to the circuit and label them as shown below.

Also, make sure you run a timing diagram to make sure the circuit is working

properly.

2. Verify your design via waveform simulation

Section B –Develop a User Constraint File “UCF” file for Full

adder I/O

1. We need to add the appropriate Spartan 3E FPGA pins to the I/O makers of

our design. Let us choose the switches instead of pushbutton for now. We

will assign the pins as follows:

NET "A" LOC = "L13"; # Switch 0 (SW0)

NET "B" LOC = "L14"; # Switch 1 (SW1)

NET "Cin" LOC = "H18"; # Switch 2 (SW2)

Outputs

NET "SUM" LOC = "F12"; # LED 0 for SUM

NET "COUT" LOC = "E12"; # LED 1 for Cout

1. In the main window, under process

pane right above Synthesize-XST,

expand “User Constraints” and select

“Edit Constraints (text)” option. This

will bring up the following window,

press “Yes” to the question about adding

a USF file. Full_Adder.ucf file will be

added to our project.

Once you click yes, you will have an empty text widow. This window will allow us to

type the code that is needed to define the relationship between our I/O makers and

Spartan 3E FPGA board

2. Enter the following text as

shown below and click on save. The

location of the pin is described above.

Section C – Translate and Fit and Map the design to the

Spartan 3E FPGA board

1. Implementation. Double click on

“Implement Design” under the process

pan on the left hand side, under

synthesize. If all goes well, you should

get green check marks on “translate,

map and Place & Route” as shown. This

process implements your Full Adder

project with Spartan 3E FPGA board.
2. If you get yellow warning, you are OK.

If you get red marks “Errors”, you will

need to go back and trace your process

to see if you might have missed

something. It is always a good idea to

select Project Clean up Project before

you go back and synthesize.

Section D – Program Full Adder into the FPGA Spartan 3 board

Attach your power and the USB cable to the board. Make sure your USB is connected

properly.

1. Double click on “Generate

Programming File” under the

implement design on the left

hand side. If all goes well, you

should get green check marks

on “Programming File

Generation Report” as shown.

2. Now double click “Configure

Device (IMPACT)” under

Generate Programming File

and make sure “Configure

devices using Boundary Scan

IJTAG” is selected and click

Finish.

3. You should be prompted

with the following screen.

As you can see there are two

devices listed in the window.

One is xc3s500e FPGA and the

xcf04s serial flash ROM. We

will need to program only the

(FPGA xc3s500e). We will do

this by selecting full_adder.bit

file from the window and click

on open.

Go ahead and cancel the second window to program the flash ROM. We will not use

the Flash ROM for this lab.

4. Right Click on the left most device and

select “Program…”:

The program gets downloaded to the FPGA board. There are a couple of additional

choices that are available but are not necessary at this point. Click OK.

At this point the FPGA should be programmed and ready for test. Test it by sliding

the programmed switches up and down for ON and OFF. See if the appropriate LEDs

for the two outputs turn on. Here is a truth table that should guide you with your

test.

SW(0) (A)

L13

SW(1)(B)

L14

SW(2)(Cin)

H18

LD0 (SUM)

F12

LD1 (Cout)

E12

0

0

0

OFF

OFF

0

0

1

ON

OFF

0

1

0

ON

OFF

0

1

1

OFF

ON

1

0

0

ON

OFF

1

0

1

OFF

ON

1

1

0

OFF

ON

1

1

1

ON

ON

When all three Switches are ON, both outputs are High (SUM and Cout).

As you can see with this approach, you do not need to replace wires and ICs if you

make mistake as you might have done in Digital Electronics. Instead, you will have

to reconfigure the FPGA with the updated design. This type of technology allows you

to concentrate on digital principles and not on the electrical wiring. Larger and more

complex projects can be undertaken now that the tedious manual procedures are

automated.

Part 2 - Implement Full Adder with (Verilog) for Spartan 3E FPGA

board:

Close the previous project, and create a new one

1. Create a new project by selecting:

File from the main menu

New Project

a. In the New Project window, name your project Full_Adder_Verilog in the

project name text box.

b. In the Project Location selection box, enter the folder or directory where

your project will be saved. Use your name for Student_Name and locate the

place where you want to save all your files (i.e C:\)

c. Under Top-Level Source Type, select HDL instead of schematic and click Next.

2. We will design our full adder for a particular device “Spartan 3E FPGA”.

Product Category: All

Device Family: Choose Spartan 3E,

the device we will be using. Device: XC3500E, the specific Spartan 3E device we use.

This is actually printed (very small) on the FPGA core.

Package: FG320, this is the package type of our device (Ball Grid Array,320 pins)

Speed Grade: The speed grade for this device is -4.

Preferred Language: Verilog

3. Click Next and add a New Source. Select Verilog Module and type

Full_Adder_Verilog for File Name. Click Next.

4. Fill in the inputs (in) and Outputs (out) as shown. Click Next and Finish

5. Between begin and end Behavior, we need to enter the following expression for

Full Adder. Based on our previous schematic design, the logic expression for the

output Sum and Cout are:

SUM = A ⊕ B ⊕ Cin

Cout = (A ⊕ B)Cin + A.B

6. Follow the same steps as before in part 1 to synthesize and obtain a timing

diagram to verify correct outputs. You should obtain a similar timing diagram.

7. Implement the design on Spartan 3E and demo your work.

Evaluation Lab 1 (5 %)
Print this and present it to me when you demonstrate your work.

Requirement Points

Complete the lab on time (2 lab sessions) /4
Build, debug and demonstrate the operation of Full adder
schematic in Xilinx and Spartan 3E FPGA board. Demo your
design

/6

Build, debug and demonstrate the operation of Full adder

Verilog in Xilinx and Spartan 3E FPGA board. Demo your

design

/6

Show Verilog syntax code for 2-bit Multiplier /4

Total /20

1. 2-bit Multiplier. A) schematic diagram B) verilog syntax code

2. Sketch / snapshot the simulation results of the full adder

NAME:-

ID:-

3. Record the FPGA resources consumed by your 2-bit multiplier design

FPGA Resources Utilization Total Available Percentage

Utilization
Slice LUTs

(LookUp Tables)

Bounded IOBs

4. What is the maximum estimated frequency at which this design in your 2-bit

multiplier can run?

a. What is the corresponding minimum clock period?

b. Maximum Frequency: ________ MHz Minimum Clock Period: ______ ns

5. Record the path reported under “Pad to Pad Report” – Place and Route

Report.

Source Pad

Destination Pad Delay

* Please hand in the design summary report of your 2-bit multiplier design along

with this Lab 1 – Evaluation form.

