
Delay and Conditional
Statement (Part 2)

Chap 6: Introduction to

HDL (f)
Credit to: Dr. MD Rizal Othman
Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

Ext: 6036

If…else statement

• If-else statements check a
condition to decide whether
or not to execute a portion of
code.

• If a condition is satisfied, the
code is executed. Else, it runs
this other portion of code.

• begin and end must be used,
when more than one
statement needs to be
executed for an if condition

Syntax : if
if (condition)
statements;

Syntax : if-else
if (condition)
statements;
else
statements;

Syntax : nested if-else-if
if (condition)
statements;
else if (condition)
statements;
................
................
else
statements;

If…else statement

reg f, g; // a new reg variable, g

always @(sel or a or b)
begin
 if (sel == 1)
 begin
 f = a;
 g = ~a;
 end
 else
 begin
 f = b;
 g = a & b;
 end
end

If statements can be nested if you have
more complex behaviour to describe:

reg f, g;
always @(sel or sel_2 or a or b)
 if (sel == 1)
 begin
 f = a;
 if (sel_2 == 1)
 g = ~a;
 else
 g = ~b;
 end
 else
 begin
 f = b;
 if (sel_2 == 1)
 g = a & b;
 else
 g = a | b;
 end

Case Statement

• Case statements are used where we have one
variable which needs to be checked for multiple
values.

• like an address decoder, where the input is an
address and it needs to be checked for all the
values that it can take.

• Instead of using multiple nested if-else
statements, one for each value we're looking for,
we use a single case statement (this is similar to
switch statements in languages like C++)

Case Statement

• Case statements begin with the reserved word
case and end with the reserved word endcase

• The cases, followed with a colon and the
statements you wish executed

• It's also a good practice to have a default case.
Just like with a finite state machine (FSM), if
the Verilog machine enters into a non-covered
statement, the machine hangs. Defaulting the
statement with a return to idle keeps us safe.

Case Statement

module mux (a,b,c,d,sel,y);
input a, b, c, d;
input [1:0] sel;
output y;

reg y;

always @ (a or b or c or d or sel)
case (sel)
 0 : y = a;
 1 : y = b;
 2 : y = c;
 3 : y = d;
 default : y=0;
endcase

endmodule

casez and casex statement

• Special versions of the case statement allow
the x ad z logic values to be used as "don't
care":

– casez : Treats z as don't care.

– casex : Treats x and z as don't care.

casez statement

module casez_example();
reg [3:0] opcode;
reg [1:0] a,b,c;
reg [1:0] out;

always @ (opcode or a or b or c)
casez(opcode)
 4'b1zzx : out = a; // Don't care about lower 2:1 bit, bit 0 match with x

 4'b01?? : out = b; // bit 1:0 is don't care
 4'b001? : out = c; // bit 0 is don't care
 default : out = 1;
endcase
endmodule

casex statement

module casez_example();
reg [3:0] opcode;
reg [1:0] a,b,c;
reg [1:0] out;

always @ (opcode or a or b or c)
casex(opcode)
 4'b1zzx : out = a; // Don't care 2:0 bits
 4'b01?? : out = b; // bit 1:0 is don't care
 4'b001? : out = c; // bit 0 is don't care
 default : out = 0;
endcase
endmodule

Task

• Tasks are used in all programming languages,
generally known as procedures or
subroutines.

• The lines of code are enclosed in task....end
task brackets.

• Data is passed to the task, the processing
done, and the result returned.

• Included in the main body of code, they can
be called many times, reducing code
repetition.

Task

• tasks are defined in the module in which they are used. It is
possible to define a task in a separate file and use the compile
directive 'include to include the task in the file which instantiates
the task.

• tasks can include timing delays, like posedge, negedge, # delay and
wait.

• tasks can have any number of inputs and outputs.
• The variables declared within the task are local to that task. The

order of declaration within the task defines how the variables
passed to the task by the caller are used.

• tasks can call another task or function.
• tasks can be used for modeling both combinational and sequential

logic.
• A task must be specifically called with a statement, it cannot be

used within an expression as a function can.

Task

module task_calling (temp_a, temp_b, temp_c,
temp_d);

input [7:0] temp_a, temp_c;

output [7:0] temp_b, temp_d;

reg [7:0] temp_b, temp_d;

always @ (temp_a)

begin

 convert (temp_a, temp_b);

end

always @ (temp_c)

begin

 convert (temp_c, temp_d);

end

task convert;

input [7:0] temp_in; output [7:0] temp_out;

begin

 temp_out = (9/5) *(temp_in + 32)

end

endtask

endmodule

Task

module task_calling (temp_a, temp_b,
temp_c, temp_d);
input [7:0] temp_a, temp_c;
output [7:0] temp_b, temp_d;
reg [7:0] temp_b, temp_d;
`include "mytask.v"

always @ (temp_a)
begin
 convert (temp_a, temp_b);
end

always @ (temp_c)
begin
 convert (temp_c, temp_d);
end

endmodule

module simple_task();

task convert;
input [7:0] temp_in;
output [7:0] temp_out;
begin
 temp_out = (9/5) *(temp_in + 32)
end
endtask

endmodule

Functions

• function is same as a task, with very little differences:

• functions are defined in the module in which they are used. It is
possible to define functions in separate files and use compile
directive 'include to include the function in the file which
instantiates the task.

• functions can not include timing delays, like posedge, negedge, #
delay, which means that functions should be executed in "zero"
time delay.

• functions can have any number of inputs but only one output.

• The variables declared within the function are local to that function.
The order of declaration within the function defines how the
variables passed to the function by the caller are used.

• functions can be used for modeling combinational logic.

• functions can call other functions, but can not call tasks.

Functions

//calling functions
module function_calling (a,
b, c, d, e, f);

input a, b, c, d, e ;
output f;
wire f;
`include "myfunction.v"

assign f = (myfunction
(a,b,c,d)) ? e :0;

Endmodule

module simple_function();
function myfunction;
input a, b, c, d;
begin
 myfunction = ((a+b) + (c-
d));
end
endfunction

endmodule

