
Delay and Conditional
Statement

Chap 6: Introduction to

HDL (e)
Credit to: MD Rizal Othman
Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

Ext: 6036

Inter-statement Delay

• The most common approach of delay
modeling in test-benches

• In this technique a delay is inserted before or
in-between statements

• Below is an example of inter-statement delay
initial
begin
 #0 X = 1; #0 Y = 2; #0 Z = 0;
 #10 Z = X + Y;
end

Inter-statement Delay

• In the example all three variables X, Y and Z
will be initialized at time 0

• The variable Z will get a sum of variables X and
Y after delay of 10 time steps.

Intra-statement Delay

• This is an alternate technique of delay
modeling by inserting delay as a part of
statement execution

• Below is an example of inter-statement delay
initial

begin

 #0 X = 1; #0 Y = 2; #0 Z = 0;

 Z = #10 X + Y;
end

Intra-statement Delay

• In the above example # delay is moved inside
the statement after ‘=’ sign

• This method of coding will cause the value of
X+Y to be stored in a temporary register for 10
time units

• After that delay (10 time units) the register Z
will get updated

Blocking and Nonblocking assignment

• Blocking assignments are executed in the
order they are coded, hence they are
sequential.

• “Blocking assignments” - they block the
execution of next statement, till the current
statement is executed.

• Assignment are made with "=" symbol.
Example a = b;

Blocking and Nonblocking assignment

• Nonblocking assignments are executed in
parallel.

• Since the execution of next statement is not
blocked due to execution of current
statement, they are called nonblocking
statement.

• Assignments are made with "<=" symbol.
Example a <= b;

Example Blocking and Nonblocking assignment

module blocking_nonblocking();

reg a,b,c,d;
// Blocking Assignment
initial begin
 #10 a = 0;
 #11 a = 1;
 #12 a = 0;
 #13 a = 1;
end

initial begin
 #10 b <= 0;
 #11 b <= 1;
 #12 b <= 0;
 #13 b <= 1;
end

initial begin
 c = #10 0;
 c = #11 1;
 c = #12 0;
 c = #13 1;
end

initial begin
 d <= #10 0;
 d <= #11 1;
 d <= #12 0;
 d <= #13 1;
end

begin ... end : Sequential Statement Groups

• Group several statements together.

• Cause the statements to be evaluated
sequentially (one at a time)

– Any timing within the sequential groups is relative
to the previous statement.

– Delays in the sequence accumulate (each delay is
added to the previous delay)

– Block finishes after the last statement in the block.

begin ... End (Example)

module sequential();

reg a;

initial begin
 $monitor ("%g a = %b",
$time, a);
 #10 a = 0;
 #11 a = 1;
 #12 a = 0;
 #13 a = 1;
end

endmodule

Simulator Output

 0 a = x
 10 a = 0
 21 a = 1
 33 a = 0
 46 a = 1

fork….join : Parallel Statement Groups

• Group several statements together.

• Cause the statements to be evaluated in
parallel (all at the same time).

– Timing within parallel group is absolute to the
beginning of the group.

– Block finishes after the last statement completes
(Statement with highest delay, it can be the first
statement in the block).

fork….join : Parallel Statement Groups

module parallel();

reg a;

initial
fork
 #10 a = 0;
 #11 a = 1;
 #12 a = 0;
 #13 a = 1;
join

endmodule

Simulator Output

 0 a = x
 10 a = 0
 11 a = 1
 12 a = 0
 13 a = 1

Looping Statements

• Looping statements appear inside procedural
blocks only

• Verilog has four looping statements like any
other programming language.

– forever

– repeat

– while

– for

The for loop statement

• for loop is the same as the for loop used in any
other programming language.
– Executes an < initial assignment > once at the start of

the loop.
– Executes the loop as long as an < expression >

evaluates as true.
– Executes a < step assignment > at the end of each pass

through the loop.

• syntax : for (< initial assignment >; < expression >,
< step assignment >) < statement >

• Note : verilog does not have ++ operator as in the
case of C language.

The for loop statement

module for_example();

integer i;
reg [7:0] ram [0:255];

initial begin
 for (i = 0; i < 256; i = i + 1) begin
 #1 $display(" Address = %g Data = %h",i,ram[i]);
 ram[i] <= 0; // Initialize the RAM with 0
 #1 $display(" Address = %g Data = %h",i,ram[i]);
 end
 #1 $finish;
end

endmodule

while loop statement

• while loop executes as long as an < expression
> evaluates as true. This is the same as in any
other programming language.

• syntax : while (< expression >) < statement >

while loop statement

module while_example();

reg [5:0] loc;
reg [7:0] data;

always @ (data or loc)
begin
 loc = 0;
 // If Data is 0, then loc is 32 (invalid value)
 if (data == 0) begin
 loc = 32;
 end else begin
 while (data[0] == 0) begin
 loc = loc + 1;
 data = data >> 1;
 end
 end
 $display ("DATA = %b LOCATION = %d",data,loc);
end

initial begin
 #1 data = 8'b11;
 #1 data = 8'b100;
 #1 data = 8'b1000;
 #1 data = 8'b1000_0000;
 #1 data = 8'b0;
 #1 $finish;
end

endmodule

repeat statement

• The repeat loop executes < statement > a fixed
< number > of times.

• syntax : repeat (< number >) < statement >

repeat statement

module repeat_example();

reg [3:0] opcode;

reg [15:0] data;

reg temp;

always @ (opcode or data)

begin

 if (opcode == 10) begin

 // Perform rotate

 repeat (8) begin

 #1 temp = data[15];

 data = data << 1;

 data[0] = temp;

 end

 end

end

// Simple test code

initial begin

 $display (" TEMP DATA");

 $monitor (" %b %b ",temp, data);

 #1 data = 18'hF0;

 #1 opcode = 10;

 #10 opcode = 0;

 #1 $finish;

end

endmodule

forever statement

• forever loop executes continually, the loop never ends.
Normally we use forever statements in initial blocks.

• syntax : forever < statement >

• One should be very careful in using a forever statement: if no
timing construct is present in the forever statement,
simulation could hang. The code below is one such
application, where a timing construct is included inside a
forever statement.

forever statement

module forever_example ();

reg clk;

initial begin

 #1 clk = 0;

 forever begin

 #5 clk = !clk;

 end

end

initial begin

 $monitor ("Time = %d clk = %b",$time, clk);

 #100 $finish;

end

endmodule

Module blocking

module blocking;

 reg[7:0] a, b, c, d, e;

 initial begin
 $monitor($time, " :\ta = %d\t", a,
 "b = %d\tc = %d\t", b, c,
 "d = %d\te = %d", d, e);
 #50 $finish;
 end

 initial begin
 a = 2;
 b = 5;
 #1 a = c;
 #1 a = d;
 #2 a = 4;
 #2 a = 7;
 b = 6;
 #2 a = d;
 $display("a, b - done");
 end

 initial begin
 c = 1;
 d = c;
 e = a;
 #2 e = d;
 c = 0;
 d = 3;
 #5 c = a;
 d = 1;
 d = 2;
 $display("c, d, e - done");
 end

endmodule /* blocking */

module blocking_intra;

 reg[7:0] a, b, c, d, e;

 initial begin
 $monitor($time, " :\ta = %d\t", a,
 "b = %d\tc = %d\t", b, c,
 "d = %d\te = %d", d, e);
 #50 $finish;
 end

 initial begin
 a = 2;
 b = 5;
 a = #1 c;
 a = #1 d;
 a = #2 4;
 a = #2 7;
 b = 6;
 a = #2 d;
 $display("a, b - done");
 end

 initial begin
 c = 1;
 d = c;
 e = a;
 e = #2 d;
 c = 0;
 d = 3;
 c = #5 a;
 d = 1;
 d = 2;
 $display("c, d, e - done");
 end

endmodule /* blocking_intra */

Module nonblocking

module non_blocking;

 reg[7:0] a, b, c, d, e;

 initial begin
 $monitor($time, " :\ta = %d\t", a,
 "b = %d\tc = %d\t", b, c,
 "d = %d\te = %d", d, e);
 #50 $finish;
 end

 initial begin
 a <= 2;
 b <= 5;
 #1 a <= c;
 #1 a <= d;
 #2 a <= 4;
 #2 a <= 7;
 b <= 6;
 #2 a <= d;
 $display("a, b - done");
 end

 initial begin
 c <= 1;
 d <= c;
 e <= a;
 #2 e <= d;
 c <= 0;
 d <= 3;
 #5 c <= a;
 d <= 1;
 d <= 2;
 $display("c, d, e - done");
 end

endmodule /* non_blocking */

module non_blocking_intra;

 reg[7:0] a, b, c, d, e;

 initial begin
 $monitor($time, " :\ta = %d\t", a,
 "b = %d\tc = %d\t", b, c,
 "d = %d\te = %d", d, e);
 #50 $finish;
 end

 initial begin
 a <= 2;
 b <= 5;
 a <= #1 c;
 a <= #1 d;
 a <= #2 4;
 a <= #2 7;
 b <= 6;
 a <= #2 d;
 $display("a, b - done");
 end

 initial begin
 c <= 1;
 d <= c;
 e <= a;
 e <= #2 d;
 c <= 0;
 d <= 3;
 c <= #5 a;
 d <= 1;
 d <= 2;
 $display("c, d, e - done");
 end

endmodule /* non_blocking_intra */

