Desigh with Verilog

Chap 6 — Introduction to
HDL (d)

Credit to: MD Rizal Othman

Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

Ext: 6036

VERILOG HDL

e Basic Unit— A module

e Module

— Describes the functionality of the design
— States the input and output ports

 Example: A Computer
— Functionality: Perform user defined computations

— |/O Ports: Keyboard, Mouse, Monitor, Printer

Module

e
* General definition -l Example
module module_name (port_list); _mOdUIe HalfAdder (A, B, Sum Carry);
nput A, B;

port declarations;

output Sum, Carry;
assign Sum = A N B;
/[denotes XOR
assign Carry = A & B;
// & denotes AND
endmodule

variable declaration;

description of behavior
endmodule

Dataflow

* Dataflow: Specify output signals in terms of
input signals

* Example:
assign out = (sel & a) | (~sel & b);

sel - —| So—— :3 i
D- out

Dataflow Modeling

* Uses continuous assignment statement

— Used to describe combinational logic

— Output of the circuit evaluated whenever an input changes, i.e
continuously assigned

— Can be used ONLY for nets, NOT for register variables

— Format: assign [delay] net = expression;
— Example: assign sum=a ? b;

* Delay: Time duration between assignment from RHS to LHS
e All continuous assignment statements execute concurrently

* Order of the statement does not impact the design

(11

TN T \

Dataflow Modeling (cont.)

* Delay can be introduced
— Example: assign #2 sum =a ” b;
— “#2” indicates 2 time-units

* Associate time-unit with physical time
— “timescale time-unit/time-precision
— Example: “timescale 1ns/100 ps

* Timescale
"timescale 1ns/100ps
— 1Timeunit=1ns
— Time precision is 100ps (0.1 ns)
— 10.512ns is interpreted as 10.5ns

) A4 1'\ (AL

Dataflow Modeling (cont.)

— Restrictions on Data Types:
* Can use only wire data type
e Cannot use reg data type

 Example:

“timescale 1ns/100ps
module HalfAdder (A, B, Sum, Carry);
input A, B;
output Sum, Carry;
assign #3 Sum = A 7 B;
assign #6 Carry = A & B;
endmodule

Dataflow Modeling (cont.)

25
0 9 18 27 36 45 54 63 72 81
A
B \<
> 3 - \
Sum ns \
6 -

Carry U

1. Implementation of a 2x4 decoder.

module decoder_2x4 (out, in0, inl);

output out[0:3];
input in0, inl;

// Data flow modeling uses logic operators.
assign out[0:3] ={~in0 & ~inl, in0 & ~in1,~in0 & inl1, in0 & inl1 };

endmodule

2. Implementation of a Full adder.
module full adder (sum, c_out, in0, inl, c_in);

output sum, c_out;
input in0, in1, c_in;

assign { ¢ out, sum }=in0+inl+c in;

endmodule

Behavioral Modeling

* Behavioral: Algorithmically specify the
behavior of the design

* Example:
if (select == 0) begin

out = b; . out
end
else if (select == 1) begin sel

out = a;

2. Behavioral Modeling

* Behavioral modeling is used to describe
complex circuits.

* [tis primarily used to model sequential
circuits, but can also be used to model pure
combinatorial circuits.

* The behavior of the design is described using
procedural constructs: initial Statements and
always Statements

Behavioral Modeling (cont.)

e always statement : Sequential Block

— Sequential Block: All statements within the block are
executed sequentially

* When is it executed?
— Occurrence of an event in the sensitivity list
— Event: Change in the logical value

e Statements with a Sequential Block: Procedural
Assignments

— can drive only reg data type.

— Which means left-side data (output) type cannot be nets.
— Can occur only within an initial or an always statement.
— It can model both combinational and sequential logic.

VT YIPVZMANVAP RN TN TSN T N

Behavioral Modeling (cont.)
~ ¢ Example:

module mux_2x1(a, b, sel, out);
input a, a, sel;
output reg out;
always @(a_or b or sel)

Sensitivity List

begin
if (sel ==1)
out = a;
else out = b;
end

endmodule

Behavioral Modeling (cont.)

* Delay in Procedural Assignments
— Inter-Statement Delay
— Intra-Statement Delay

* |nter-Assignment Delay

— Example:
Sum =A 7 B;
#2 Carry = A & B;
— Delayed execution

* |Intra-Assignment Delay

— Example:
Sum = A " B;
Carry = #2 A & B;
— Delayed assignment

Procedural Statement

e Two Procedural Statement
— initial Statement
— always Statement

* initial Statement : Executes only once
* always Statement : Executes in a loop

 Example:
initial begin always @(A or B) begin
Sum = 0; Sum = A B;
Carry = 0; Carry = A & B;

end end

Event Control

* Event Control
— Edge Triggered Event Control
— Level Triggered Event Control

* Edge Triggered Event Control
@ (posedge CLK) //Positive Edge of CLK
Curr_State = Next_state;

@ negedge @ posedge
1 —>X 0—>x
1>z 0>z
1-0 0->1
X —0 X —1
z—0 z—>1

e Level Triggered Event Control

@ (A or B) //change in values of A or B
Out=A & B;

module cont_proc (in1, in2, outl _cont, out2_cont, outl_proc, out2_proc);
input inl, in2;
output outl cont, out2_cont, outl proc, out2 proc;

wire inl, in2 ,outl cont, out2_cont;
reg outl proc, out2 proc;
//continuous assignment

assign #2 outl _cont=inl | in2;
assign #1 out2_cont=inl | in2;

always@(inl, in2) begin
//procedural assignment
#2 outl proc=inl | in2;
#1 out2_proc=inl | in2;
end

~endmodule

Loop Statements

* Loop Statements
— Repeat
— While
— For

* Repeat Loop

— Example:
repeat (Count)
sum =sum + 5;

— If conditionisaxorzitistreatedasO

TRVTARTA T T R

Loop Statements (cont.)

 While Loop

— Example:
while (Count < 10) begin
sum =sum + 5;
Count = Count +1;
end

— If conditionisaxorzitistreatedasO

* For Loop

— Example:
for (Count = 0; Count < 10; Count = Count + 1) begin
sum =sum + 5;
end

Conditional Statements

if Statement

* Format:
if (condition)
procedural_statement
else if (condition)
procedural_statement
else

procedural_statement

* Example:
if (Clk)
Q=0;
else
Q=D;

Conditional Statements (cont.)

e Case Statement

 Example 1:
case (X)
2’b00: Y =A + B;
2’b01:Y=A-B;
2’b10:Y=A/ B;
endcase

Conditional Statements (cont.)

Variants Of case Statements:
— casex and casez

casez — z is considered as a don’t care
casex — both x and z are considered as don’t cares

Example:

casez (X)
2’b1z: A=B +C;
2’bl11: A=B/C;
endcase

1. Implementation of a full adder.
module full _adder (sum, c_out, in0, in1, c_in);

output sum, c_out;
reg sum, c_out

iInput in0, in1, c_in;

always @(in0O, inl1, c_in)
{c out,sum}=in0+inl+c_in;

“endmodule

2. Implementation of a 8-bit binary counter.
module (count, reset, clk);

output [7:0] count;
reg [7:0] count;

input reset, clk;
// consider reset as active low signal

always @(posedge clk, negedge reset)
begin

if(reset == 1'b0)

count <= 8'h00;

else

count <= count + 8'h01;

end

endmodule

Implementation of a Full adder
using Dataflow modeling

module full _adder (sum, c_out,
in0, in1, c_in);

output sum, c_out;
input inO, inl, c_in;

assign { c_out,sum }=in0+inl +
c_in;

endmodule

Implementation of a full adder
using Behavioral modeling

module full _adder (sum, c_out,
in0, in1, c_in);

output sum, c_out;
reg sum, c_out

input inO, inl, c_in;

always @(*)
{c_out, sum}=in0+inl+c_in;

endmodule

Homework & Discussion

3. Implementation of a 4x1 multiplexer using
Dataflow and Behavioral modeling.

Module...

endmodule

3. Structural Modeling

1. Data flow:
— To design combinational ONLY
— Use assign statement

2. Behavior

— To design combinational and sequential circuits

— Uses arithmetic expressions, procedural
assignments (initial and always), or other Verilog
control flow structures

3. Structural Modeling

* A top-down design by combining lower-level
logic modules into a larger structural module.

* Each lower-level modules (sub-modules) must
have previously compiled and tested for
correct functional operation

e Structural modeling can be described using
build-in gate primitives or module instances in
any combination

 |Interconnections between instances are
specified using nets

A\ /,g |’"\ v“’ \

3. Structural Modeling (Example...)

Design the circuit based on expression:
z1 = x1x2 + x2x3'x4 + x1'x2'x3x4

3. Structural Modeling (Example...)

Design a full adder circuit using structural modeling

hall adder df

sum =g = bh B cin

contt = oo &6 B+ ab

full adder strue

gum = a$ b ! h?lt__fidﬂez _fh:‘ hall" adder_df

|, ot L ins2”)

cout = ab ta -

+6

by

Group discussion

3. Structural Modeling (homework?...)

Design a four-bit ripple adder circuit using structural modeling

aftf -
Bfof -

Cin

af 1] —

b}

af2] —

bi2]

af3] .
3D .

| _w _E__n._

E: EEE

_m. Fm:,

n.__m_._ _rn__nm q ef 0

sum[O]

sumf{]

sumf 2]

sumf3]

i

Group discussion

4. Mixed-design Modeling

* |ncorporates different modeling styles in the
same module

* Includes gate, module instantiations,
continuous assignment and behavioral
constructs

* For example, a full adder can be designed
using built-in primitives, dataflow and
behavioral modeling

4. Mixed-design Modeling

[ull adder soruc
L S - - — — — — =Ry SR . T e e——
1 "'E“E E“‘tﬂlfl o half adder_df
s -
\ ha sum[1] inst2 —
ﬂ’ ﬁ :: L yr— tstm

_‘E__'L)—‘E cy[1] |

lcim

//mixed-designed full adder //built-in primitive
Module full_adder_mix Xor (netl, a,b);
(a,b,cin,sum,cout);
// list inputs and outputs //behavioral
Input a, b, cin; Always @ (a or b or cin)
Output sum, cout; Begin t=cin & (arb) | (a&b)
: : cout=cin & (a a&b);

// define reg and wire End
Reg cout;
Wire a, b, cin; //dataflow

- Wire sum;

Assigh sum=netl”cin;
Wire netl; endmodule

Exercise & Discussion

* Finite state machine (FSM)

