
Design with Verilog

Chap 6 – Introduction to

HDL (d)
Credit to: MD Rizal Othman
Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

Ext: 6036

2

VERILOG HDL

• Basic Unit – A module

• Module

– Describes the functionality of the design

– States the input and output ports

• Example: A Computer

– Functionality: Perform user defined computations

– I/O Ports: Keyboard, Mouse, Monitor, Printer

3

Module

• General definition

module module_name (port_list);

 port declarations;

 …

 variable declaration;

 …

 description of behavior

endmodule

 Example

module HalfAdder (A, B, Sum Carry);

input A, B;

output Sum, Carry;

assign Sum = A ^ B;

//^ denotes XOR

assign Carry = A & B;

// & denotes AND

endmodule

4

Dataflow

• Dataflow: Specify output signals in terms of
input signals

• Example:

 assign out = (sel & a) | (~sel & b);

sel

b

a

out
sel_n

sel_b

sel_a

5

Dataflow Modeling

• Uses continuous assignment statement
– Used to describe combinational logic
– Output of the circuit evaluated whenever an input changes, i.e

continuously assigned
– Can be used ONLY for nets, NOT for register variables

– Format: assign [delay] net = expression;
– Example: assign sum = a ^ b;

• Delay: Time duration between assignment from RHS to LHS

• All continuous assignment statements execute concurrently

• Order of the statement does not impact the design

6

Dataflow Modeling (cont.)

• Delay can be introduced
– Example: assign #2 sum = a ^ b;
– “#2” indicates 2 time-units

• Associate time-unit with physical time
– `timescale time-unit/time-precision
– Example: `timescale 1ns/100 ps

• Timescale
 `timescale 1ns/100ps

– 1 Time unit = 1 ns
– Time precision is 100ps (0.1 ns)
– 10.512ns is interpreted as 10.5ns

7

Dataflow Modeling (cont.)

– Restrictions on Data Types:
• Can use only wire data type

• Cannot use reg data type

• Example:
`timescale 1ns/100ps

module HalfAdder (A, B, Sum, Carry);

 input A, B;

 output Sum, Carry;

 assign #3 Sum = A ^ B;

 assign #6 Carry = A & B;

endmodule

8

Dataflow Modeling (cont.)

1. Implementation of a 2x4 decoder.

module decoder_2x4 (out, in0, in1);

output out[0:3];

input in0, in1;

// Data flow modeling uses logic operators.

assign out[0:3] = { ~in0 & ~in1, in0 & ~in1,~in0 & in1, in0 & in1 };

endmodule

2. Implementation of a Full adder.

module full_adder (sum, c_out, in0, in1, c_in);

output sum, c_out;
input in0, in1, c_in;

assign { c_out, sum } = in0 + in1 + c_in;

endmodule

11

Behavioral Modeling

• Behavioral: Algorithmically specify the
behavior of the design

• Example:

 if (select == 0) begin

 out = b;

 end

 else if (select == 1) begin

 out = a;

 end

a

b

sel

out Black Box

2x1 MUX

2. Behavioral Modeling

• Behavioral modeling is used to describe
complex circuits.

• It is primarily used to model sequential
circuits, but can also be used to model pure
combinatorial circuits.

• The behavior of the design is described using
procedural constructs: initial Statements and
always Statements

13

Behavioral Modeling (cont.)

• always statement : Sequential Block

– Sequential Block: All statements within the block are
executed sequentially

• When is it executed?
– Occurrence of an event in the sensitivity list
– Event: Change in the logical value

• Statements with a Sequential Block: Procedural
Assignments
– can drive only reg data type.
– Which means left-side data (output) type cannot be nets.
– Can occur only within an initial or an always statement.
– It can model both combinational and sequential logic.

14

Behavioral Modeling (cont.)

• Example:

module mux_2x1(a, b, sel, out);

 input a, a, sel;

 output reg out;

 always @(a or b or sel)

 begin

 if (sel == 1)

 out = a;

 else out = b;

 end

endmodule

 Sensitivity List

15

Behavioral Modeling (cont.)

• Delay in Procedural Assignments
– Inter-Statement Delay
– Intra-Statement Delay

• Inter-Assignment Delay
– Example:

Sum = A ^ B;
#2 Carry = A & B;

– Delayed execution

• Intra-Assignment Delay
– Example:

Sum = A ^ B;
Carry = #2 A & B;

– Delayed assignment

16

Procedural Statement

• Two Procedural Statement
– initial Statement
– always Statement

• initial Statement : Executes only once
• always Statement : Executes in a loop
• Example:

…

initial begin

 Sum = 0;

 Carry = 0;

end

…

…

always @(A or B) begin

 Sum = A ^ B;

 Carry = A & B;

end

…

17

Event Control

• Event Control

– Edge Triggered Event Control

– Level Triggered Event Control

• Edge Triggered Event Control

@ (posedge CLK) //Positive Edge of CLK

 Curr_State = Next_state;

• Level Triggered Event Control

@ (A or B) //change in values of A or B

 Out = A & B;

module cont_proc (in1, in2, out1_cont, out2_cont, out1_proc, out2_proc);
input in1, in2;
output out1_cont, out2_cont, out1_proc, out2_proc;

wire in1, in2 ,out1_cont, out2_cont;
reg out1_proc, out2_proc;
//continuous assignment
assign #2 out1_cont = in1 | in2;
assign #1 out2_cont = in1 | in2;

always@(in1, in2) begin
//procedural assignment
 #2 out1_proc = in1 | in2;
 #1 out2_proc = in1 | in2;
end
endmodule

19

Loop Statements

• Loop Statements
– Repeat

– While

– For

• Repeat Loop
– Example:

repeat (Count)

 sum = sum + 5;

– If condition is a x or z it is treated as 0

20

Loop Statements (cont.)

• While Loop
– Example:

while (Count < 10) begin
 sum = sum + 5;
 Count = Count +1;
end

– If condition is a x or z it is treated as 0

• For Loop
– Example:

for (Count = 0; Count < 10; Count = Count + 1) begin
 sum = sum + 5;
end

21

Conditional Statements

• if Statement
• Format:

if (condition)
 procedural_statement
else if (condition)
 procedural_statement
else

 procedural_statement
• Example:

if (Clk)
 Q = 0;
else
 Q = D;

22

Conditional Statements (cont.)

• Case Statement

• Example 1:
case (X)

 2’b00: Y = A + B;

 2’b01: Y = A – B;

 2’b10: Y = A / B;

endcase

23

Conditional Statements (cont.)

• Variants of case Statements:
– casex and casez

• casez – z is considered as a don’t care

• casex – both x and z are considered as don’t cares

• Example:
 casez (X)
 2’b1z: A = B + C;
 2’b11: A = B / C;
 endcase

1. Implementation of a full adder.

module full_adder (sum, c_out, in0, in1, c_in);

output sum, c_out;
reg sum, c_out

input in0, in1, c_in;

always @(in0, in1, c_in)
{c_out, sum} = in0 + in1 + c_in;

endmodule

2. Implementation of a 8-bit binary counter.

module (count, reset, clk);

output [7:0] count;
reg [7:0] count;

input reset, clk;

// consider reset as active low signal

always @(posedge clk, negedge reset)
begin
if(reset == 1'b0)
count <= 8'h00;
else
count <= count + 8'h01;
end

endmodule

• Implementation of a Full adder
using Dataflow modeling

module full_adder (sum, c_out,
in0, in1, c_in);

output sum, c_out;
input in0, in1, c_in;

assign { c_out, sum } = in0 + in1 +
c_in;

endmodule

• Implementation of a full adder
using Behavioral modeling

module full_adder (sum, c_out,
in0, in1, c_in);

output sum, c_out;
reg sum, c_out

input in0, in1, c_in;

always @(*)
{c_out, sum} = in0 + in1 + c_in;

endmodule

Homework & Discussion

3. Implementation of a 4x1 multiplexer using
Dataflow and Behavioral modeling.

Module…

….

….

….
endmodule

3. Structural Modeling

1. Data flow:

– To design combinational ONLY

– Use assign statement

2. Behavior

– To design combinational and sequential circuits

– Uses arithmetic expressions, procedural
assignments (initial and always), or other Verilog
control flow structures

3. Structural Modeling

• A top-down design by combining lower-level
logic modules into a larger structural module.

• Each lower-level modules (sub-modules) must
have previously compiled and tested for
correct functional operation

• Structural modeling can be described using
build-in gate primitives or module instances in
any combination

• Interconnections between instances are
specified using nets

3. Structural Modeling (Example…)

Design the circuit based on expression:

z1 = x1x2 + x2x3’x4 + x1’x2’x3x4

3. Structural Modeling (Example…)

Design a full adder circuit using structural modeling

Group discussion

3. Structural Modeling (homework?…)

Design a four-bit ripple adder circuit using structural modeling

Group discussion

4. Mixed-design Modeling

• Incorporates different modeling styles in the
same module

• Includes gate, module instantiations,
continuous assignment and behavioral
constructs

• For example, a full adder can be designed
using built-in primitives, dataflow and
behavioral modeling

4. Mixed-design Modeling

//mixed-designed full adder

Module full_adder_mix
(a,b,cin,sum,cout);

// list inputs and outputs

Input a, b, cin;

Output sum, cout;

// define reg and wire

Reg cout;

Wire a, b, cin;

Wire sum;

Wire net1;

//built-in primitive
Xor (net1, a,b);

//behavioral
Always @ (a or b or cin)
Begin
 cout=cin & (a^b)|(a&b);
End

//dataflow
Assign sum=net1^cin;
endmodule

Exercise & Discussion

• Finite state machine (FSM)

