Desigh with Verilog

Chap 6 - Introduction to
HDL (b)

Credit to: MD Rizal Othman

Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

Ext: 6036

Language Elements

0 EEEESSSsSS——————e—se——— - = - = —am== - - s s aamsssss S e
1. Operators

There are three types of operators: unary, binary, and ternary,
which have one, two, and three operands respectively.

Unary : Single operand, which precede the operand.
Ex:x="y

~is a unary operator

y is the operand

binary : Comes between two operands.
Ex:x=vy || z

| | is a binary operator

y and z are the operands

ternary : Ternary operators have two separate operators that
separate three operands.

ExX:p=x?y:z

? . is a ternary operator

X, Y, and z are the operands

3.1 Gate level Primitives

= Verilog includes a set of gate level primitives corresponding to
commonly used logic gates

(v, x1, x2); // 2-input AND gate More primitives
\ﬂ_a‘ +
1 everything after // to end of line is a comment (out, in1, in2);
specifies input, x1 and x2

(out, in);
specifies output, y (out, in1, in2)
out, in1, in2);

keyword that specifies gate type
(out, in1, in2);
(out, in1, in2);

(f, a, b, ¢); // 3-input AND gate (out, int, in2);

(out, in1, in2, in3, in4); // 4-input AND gate

LRGN

- EXample 1

i B e e e B B e e e e B e e B e

Using primitives let’s implement a circuit in

Verilog

x1

2

X3

X1 4

X3 4+

Il example1.v
example1 (x1, x2, x3, f);

example1

module indicates the start of
our specification, endmodule
indicates the end

we have a “black box”
named examplel

"black box"” has 4 ports — x1,
X2, x3, f

. L ey
Example 1 Continued
| S R e SR R B B R L R S B B B R B B B EE SR G B B RS B B SRR i L B B B B B R A B SR B B B B R e R R S
“; /I example1.v
X .
f e;:ar:gl&‘;;xh x2, x3, f): input statement indicates x1,
xf,' » X, x2, and x3 are inputs to the
x3 ' systems
output statement indicates f
is an output of the system
x1 7
12
»f
x3

examplal

' Example 1 Continued

| S rR G il B Pl Lo == (Do i Sote &) AR B8] (80 Sl (14 B Sl S8 A ot Bl TR BW) (B caud == Sl Bl == rhd B (FR1 B om0 o TR (RFR SR £ (Tfar o e B
x; /| example1.v
X BT ;
rin v.‘e);ar:gleg.(xt X2, x3, 1 actual structure of the circuit
e xf » X9 specified by the primitives
X3 s :' g; '
first and statement specifies
nd (g, x1, x2); an AND gate with input x1

s
x2

x3 —+—

4

example1

and x2, output g

g is internal value, use wire

wire is just a connection, does not
store value

CAUTION -~ Verilog will implicitly
declare wire if you dont but it will
be a 1-bit wire

== Example 1 Continued

LS RS St men Bt R

2
s

| B

s RS L EE A S B s s e R R e B e e s

R S S i LEe B R b B

S SR i e

Il example1.v
examplel (x1, x2, x3, f);
x1, x2, x3;
=
g. k. h;

(g, x1, x2);

(k, x2);

(h, k, x3);
(f, g, h);

not statement specifies a

NOT gate with input x2 and
output k

next and statement specifies
an AND gate with input k
and x3, output h

or statement specifies an OR
gate with input g and h,
output f

=== Example 1 Continued

i MR o el e oo el Wi B O (Ol Pl | S P Dol s G i Sl S el A b o e, Do (ol bl ol Sl b e (e i e

x1

x3

!l example1.v
examplel (x1, x2, x3, f);
x1, x2, x3;
f;
g, k, h;

(g. x1, x2);

(k, x2);

(h, k, x3):
(f, g. h);

| S50 o] el By BECeEr [t i DG 0, oni e

Done!
We have implemented
our circuit in Verilog

Example 2

Lo e e L

= |et's try another
example

x1—l—-

X3 ’

X2 ,

x4—1

Example 2

g e e e e et e T i e e e

Let’s try another
example
x1
— 43
X2
x4 -
% 0 -1
— B

/f Example 2

g =x1x3 + x2x4
IMh=(x1+x3")(x2" +x4)
[l f=g +h

exampleZ (x1, x2, x3, x4, f, g, h);
x1, %2, %3, x4;
f.g. b

(z1, x1, x3);

(z2, x2, x4);
(g9, z1, z2);
(z3, x1, ~x3);
(z4, ~x2, x4);

(h, 23, z4),
(f. g, h);

e eital 1 Mot bl el L I G R S R Do R DECILEDE (SR JERE [OE SRS it Sl elele el Bl et SRl el il e it]|

enclose description
petween module
and endmodule

Example 2 Continued

 ih8e Bt i bew B

[H-n

S I E M e LT T T S T S I S IS I S S T L g L e

— g

/l Example 2
/I'g=x1x3 + x2x4

I h = (x1+x3")(x2'+x4)
lIf=g+h

e example2 (x1, x2, x3, x4, f, g, h);
put x1, x2, x3, x4;
itput f, g, h;

ind (21, x1, x3);
nd (22, x2, x4);

(g, 21, z2);

r (z3, x1, ~x3);
(24, ~x2, x4);
el (h, 23, z4);
(f, g, h);

B Sas S Bag e L Lup) B Sas GAb B Sap Bt Bd Ben

-

module named
example2

7 port signals
- X1, X2, X3, x4,
f,g,h

_ Example 2 Continued

DR AR el DS So Bass B B TS Bl BE SoAE oo RERE B B RS SR Sun R aan Rl Band B et s B Lo i Bl B B B RS B Bek S A Bt BE B B S B S B B

8

Bl

I/l Example 2

Il g =x1x3 + x2x4
fIh=(x1+x3")(x2'+x4)
Il f=g +h

example2 (x1, x2, x3, x4, f, g, h);
put x1, x2, x3, x4;
output f, g, h;

nd (21, x1, x3);
and (22, x2, x4);
(g, 21, 22);
or (z3, x1, ~x3);
(z4, ~x2, x4);
ndd (h, 23, z4);
v (f, g, h);

—

x1, x2, x3, and x4
are inputs to the
system

f, @, h are outputs
of the system

===1 EXample 2 Continued

(SN B8 B b B B B Al B e B34 B TEAT B TR BAs B fad B E20 S| B RAAT B Bl BRD B Sad B N8 Bl EES 1w B FAg BEd S5 SRR TRAY B B Bt B g S

=g

~h

// Example 2

Il g = x1x3 + x2x4

II'h = (x1+x3")(x2'+x4)
/I f=g +h

Y example2 (x1, x2, x3, x4, f, g, h);
nput x1, x2, x3, x4;
utput f, g, h;

ind (z1, x1, x3);
nd (22, x2, x4);
or (g, 21, z2);
or (23, x1, ~x3);
(24, ~x2, x4);
i (h, 23, z4);
(f. g, h);

—

we define how the
circult is connected

L

=== Example 2 Continued

) e eyt peagt e s g es ol gy Faal I jea g s faa] S e e g PrTpes o Py g

' [——
x3 $-
x2

x4

z1

d

- h

I/l Example 2

Il g = x1x3 + x2x4

IIh = (x1+x3")(x2"+x4)
Il f=g +h

odule example2 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
outj ‘v:f, g, h;

and (21, x1, x3);
and (22, x2, x4);
or (g, 21, z2);

or (23, x1, ~x3);
or (z4, ~x2, x4),
and (h, 23, z4);
v (f. g. h);

S=gEgasEn e sayaagsy s misy ey

=)

we define how the
circuit is connected

L

3.2 Operator

Bit-Wise Operator

= Verilog includes a set of bit-wise operators
= Takes each bit in one operand and perform the operation with the
corresponding bit in the other operand

» If one operand is shorter than the other, it will be extended on the
left side with zeroes to match the length of the longer operand

a &b; // bit-wise AND Bit-wise Operators
ifa =00, b=01, thenf = 00 NOT
ifa =01, b =01, then f = 01 AND
ifa=11, b =10, thenf = 10 OR

~a + b; // bit-wise NOT then OR XOR
ifa=00 b=01, thenf = 11 XNOR

ifa=01,b=01,thenf = 11
if a =11, b = 10, then f = 10

===t Example 3 - Modeling a Circuit1 With Bit-wise —
Operators

SR e SRR B B B B B S B B B B e e e TR B B B B PR B S S B P B R B B R e B e e e e e e

= Model circuit from example 1 using bit-wise operators

same module and

endmodule
x) il Example 3
x2 I Exampie same module naming,
rt list
; f example3 (x1, x2, x3, f); port lis
x3 x:ﬂ x3, same input/output

declarations

f=(x1&x2)|(~x2 & x3); 4—‘

difference in how we
describe the circuit

~ Example 3 Continued

SR Rows) Lol e Fel BRRS Tl BR RS bl [one Bl i RES A 1adl ot RS S8 1o boot ool RO B Rde Bmd Mo &3 o Roat mma J4m ot o il et B o o Bt il B226 e Sl s Ry e Ao AR R

:; /l Example 3
iE f module example3 (x1, x2, x3, f);
s put x1, x2, x3;
tput f ;

* weidn f=(x1 & x2) | (~x2 & x3);
we know how to go from |

logic circuit to logic \dmoduls
expression /

f=(x1"x2)+ (x2"*x3) /
| replace AND, OR, NOT operations
with Verilog operators

/"‘,0 / \\" Wi ‘ / \ 1 ’\ i\ I W \ ﬁ’o { \\‘

s EXample 3 Continued —

R 2R T U ol L il e i s el e T T SR S Ll ok Sy 2t o e S e RN e L s SR e s o s Tl e SR Bl C LB L e L i (R B s LR |

:; /! Example 3
% f nodule example3 (x1, x2, x3, f);
3 input x1, x2, x3;

utput f;
Gesia)f = (x1 & x2) | (~x2 & x3);

4

\

assign keyword indicates anytime something changes on
right hand side, re-evaluate left hand side

“ Example 4 - Modeling Circuit With Bit-wise Operators =

= Model circuit from example 2 using bit-wise operators

by [

“ Example 4 - Modeling Circuit With Bit-wise Operators ™

= Model circuit from example 2 using bit-wise operators

ié » /I Example 4

@ | .
X2 = exampled (x1, x2, x3, x4, f, g, h);
x4 input x1, x2, x3, x4,

:D-f t1 f,g,h;

ng=(x1&x3)|(x2 & x4);

?? : L}L : | nh=(x1]|~x3) & (~x2 | x4);

- f:glh'

3.2. Operators

Arithmetic Operators

* These perform arithmetic operations. The + and - can be used
as either unary (-z) or binary (x-y) operators.

* Operators
+ (addition)
- (subtraction)
* (multiplication)
/ (division)
% (modulus)
 Examples: parameter n=4;
reg[3:0] a, c, f, g, count;
f=a+c;
g=cCc-n;

count = (count +1)%16; /ICan count O thru 15.

mn I\ 4 | \ NN

{

84

Relational Operators
* Relational operators compare two operands and return a single bit 1 or O.

e examplea<b
— Oifthe relation is false (a is bigger then b)
— 1ifthe relation is true (a is smaller then b)
— xif any of the operands has unknown x bits (if a or b contains X)

* These operators synthesize into comparators.
* Operators

< (less than)

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)

== (equal to)

I= (not equal to)

Example

e //a=5 b=10,
a<=b—>1

e //a=5b=10
a>=b=> 0

e //a=xb=10
— a<=b =» x

e //a=zb=10
— a<=b = x

* Equality Operators
 There are two types of Equality operators. Case Equality and Logical Equality.

a === a equal to b, including x and z (Case equality)

al== a not equal to b, including x and z (Case inequality)

a== a equal to b, result may be unknown (logical equality)
al=b a not equal to b, result may be unknown (logical equality)

* Operands are compared bit by bit, with zero filling if the two operands do not have
the same length

* Resultis O (false) or 1 (true)
 For the == and != operators, the result is x, if either operand contains an x or a z

* For the === and == operators, bits with x and z are included in the comparison
and must match for the result to be true. The result is always 0 or 1.

oM\ A DA (A4 N AN b

e 4'bx001 === 4'bx001 =1
e 4'bx0x1 === 4'bx001 =0
e 4'pbz0x1 === 4'bz0x1 =1
e 4'pbz0x1 === 4'bz001 =0
e A4'bx0x1 !== 4'bx001 =1
e 4'bz0x1 == 4'bz001 =1
e 5==10 =0

e 5 == =1

e 5I=5 =0

e 5I=6 =1

Logical Operators

Logical operators return a single bit 1 or 0. They are the same as bit-wise
operators only for single bit operands.

They can work on expressions, integers or groups of bits, and treat all
values that are nonzero as “1”.
Expressions connected by && and | | are evaluated from left to right
— The result is a scalar value:
— 0 if the relation is false
— 1if the relation is true
— x if any of the operands has x (unknown) bits
Logical operators are typically used in conditional (if ... else) statements
since they work with expressions.
Operators
— I (logical NOT)
— && (logical AND)
— || (logical OR)

wire[7:0] x, vy, z; // x, y and z are multibit variables.

reg a;

if (x==y)&& (z))a=1; //a=1ifxequalsy, and z is nonzero.
else a=Ix; /I a =0 if x is anything but zero.

* 1'bl1&&1b1=1

e 1'h1&&1'b0=0
e 1'b1 && 1'bx=x

e 1b1]||1'b0=1
e 1'b0 || 1'O=0
e 1'v0 || 1'bx =x
e 111 =0
e 110 =1

\ r

Reduction Operators

* Reduction operators operate on all the bits of an operand vector and
return a single-bit value.

 These are the unary (one argument) form of the bit-wise operators above.

* Operators
— & (reduction AND)
— | (reduction OR)
— ~& (reduction NAND)
— ~| (reduction NOR)
— A (reduction XOR)
— ~Aor M(reduction XNOR)

module chk_zero (a, z); a(0)

input [2:0] a;

output z; 3 _a@2) |
assign z = ~| a; // Reduction NOR
endmodule

& 4'b1001 =0 ~| 4'b1001 =0
& 4'bx111 =x ~| 4'bx001 =0
~& 4'b1001 =1 ~| 4'bz001 =0
~& 4'bx001 =1 A 4'b1001 = O
~& 4'bz001 =1 A 4'bx001 = X
|4'b1001 = 1 ~A 4'p1001 = 1

| 4'bXOOO =X ~A 4|bX001 = %

Shift Operators

e Shift operators shift the first operand by the number
of bits specified by the second operand.

* Vacated positions are filled with zeros for both left
and right shifts (There is no sign extension).

* Operators
— << (shift left)
— >> (shift right)

assignc =a<<2; /¥ ¢ = ashifted left 2 bits;
vacant positions are filled with 0’s */

Gl RN | (A ORGSR

e 4'h1001 << 1=0010
e 4'p10x1<<1-=
e 4'b10z1<<1-=
e 4'p1001>>1=0100
e 4'b10x1>>1-=
e 4'b10z1>>1-=

e 4'p1001 << 1=0010
e 4'p10x1<<1=0x10
e 4'p10z1<<1=0z10
 4'p1001>>1=0100
 4'p10x1>>1=010x
e 4'b10z1>>1 =010z

Concatenation Operator

* The concatenation operator combines two or
more operands to form a larger vector.

* Operators

— {}(concatenation)

wire [1:0] a, b; wire [2:0] x; wire [3:0] v, Z:
assign x = {1'b0, a}: // x[2]=0, x[1]=a[l], x[0]=a[0]

assigny = (a,b): /*y[3]=a[1], y[2]=a[0], ¥[1]=b[1]
¥[0]=b[0] *

assign {cout, vy} = x + Z: // Concatenation of a result

(11

Lol MARGARALR

Replication Operator

* The replication operator makes multiple
copies of an item.

* Operators

— {n{item}} (n fold replication of an item)

wire [1:0] a. b; wire [4:0] x;:
assign x = {2{1'b0}, a}; // Equivalent to x = {0,0,a }
assigny = {2{a}, 3{b}}: //Equivalentto v = {a,a,b,b}

ll?ll
[]

Conditional Operator:

e Conditional operator is like those in C/C++. They evaluate one
of the two expressions based on a condition.

e [t will synthesize to a multiplexer (MUX).
* Operators

— (cond) ? (result if cond true):

(result if cond false)

assigna=1(g) 7 x:vy:

assigna=(inc==2) 7 a+l : a-1:
/* if (inc), a = a+1, else a=a-1

TP TN

5.10. Operator Precedence

* Table 5.1 shows the precedence of operators
from highest to lowest.

* Operators on the same level evaluate from left
to right. It is strongly recommended to use
parentheses to define order of precedence
and improve the readability of your code.

Operator

Name

[]

bit-select or part-select

parenthesis

e

logical and bit-wise NOT

&, |, ~&, ~], A ~n A

reduction AND, OR, NAND, NOR, XOR, XNOR:
If X=3B101 and Y=3"B110, then X&Y=3"B100, X*Y=3"B0I1;

+, - unary (sign) plus, minus; +17,-7
[} concatenation; {3'BI0L, 3’B1I0} =6 BI101110;
({11 replication; {3{3B110}} =9B110110110
L% multiply. divide, modulus; 2 1o] ar SVnthesi
+, - binary add. subtract.
<<, > shift left, shift right; X<<2 is multiply by 4
<, €=, >, >= comparisons. Reg and wire variables are taken as positive numbers.
=== logical equality, logical inequality
===,1== case equality, case inequality: pot synthesizable
& bit-wise AND; AND together all the bits in a word
A=A A bit-wise XOR, bit-wise XNOR
| bit-wise OR: AND together all the bits in a word
&&, logical AND. Treat all variables as False (zero) or True (nonzero).
I logical OR. (7]0) is (T|[F) = 1. (2]]-3)is (T(IT) =1,
(3&&0) is (T&&F) = 0.

conditional. x=(cond)? T : F;

Table 5.1: Verilog Operators Precedence

