
Design with Verilog

Chap 6 - Introduction to

HDL (b)
Credit to: MD Rizal Othman
Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

Ext: 6036

Language Elements

1. Operators

There are three types of operators: unary, binary, and ternary,
which have one, two, and three operands respectively.

Unary : Single operand, which precede the operand.
Ex: x = ~y
~ is a unary operator
y is the operand

binary : Comes between two operands.
Ex: x = y || z
|| is a binary operator
y and z are the operands

ternary : Ternary operators have two separate operators that
separate three operands.
Ex: p = x ? y : z
? : is a ternary operator
x, y, and z are the operands

3.1 Gate level Primitives

3.2 Operator

Bit-Wise Operator

3.2. Operators

Arithmetic Operators

• These perform arithmetic operations. The + and - can be used
as either unary (-z) or binary (x-y) operators.

• Operators
 + (addition)

 - (subtraction)

 * (multiplication)

 / (division)

 % (modulus)

• Examples:

Relational Operators

• Relational operators compare two operands and return a single bit 1 or 0.

• example a < b
– 0 if the relation is false (a is bigger then b)

– 1 if the relation is true (a is smaller then b)

– x if any of the operands has unknown x bits (if a or b contains X)

• These operators synthesize into comparators.

• Operators

< (less than)

<= (less than or equal to)

> (greater than)

>= (greater than or equal to)

== (equal to)

!= (not equal to)

Example

• //a=5 b=10,
 a <= b  1

• // a=5 b=10
 a>= b 0

• // a=x b=10
– a<=b  x

• // a=z b=10
– a<=b  x

• Equality Operators

• There are two types of Equality operators. Case Equality and Logical Equality.

• Operands are compared bit by bit, with zero filling if the two operands do not have
the same length

• Result is 0 (false) or 1 (true)

• For the == and != operators, the result is x, if either operand contains an x or a z

• For the === and !== operators, bits with x and z are included in the comparison
and must match for the result to be true. The result is always 0 or 1.

Operator Description

a === b a equal to b, including x and z (Case equality)

a !== b a not equal to b, including x and z (Case inequality)

a == b a equal to b, result may be unknown (logical equality)

a != b a not equal to b, result may be unknown (logical equality)

• 4'bx001 === 4'bx001 = 1
• 4'bx0x1 === 4'bx001 = 0
• 4'bz0x1 === 4'bz0x1 = 1
• 4'bz0x1 === 4'bz001 = 0
• 4'bx0x1 !== 4'bx001 = 1
• 4'bz0x1 !== 4'bz001 = 1
• 5 == 10 = 0
• 5 == 5 = 1
• 5 != 5 = 0
• 5 != 6 = 1

Logical Operators
• Logical operators return a single bit 1 or 0. They are the same as bit-wise

operators only for single bit operands.
• They can work on expressions, integers or groups of bits, and treat all

values that are nonzero as “1”.
• Expressions connected by && and || are evaluated from left to right

– The result is a scalar value:
– 0 if the relation is false
– 1 if the relation is true
– x if any of the operands has x (unknown) bits

• Logical operators are typically used in conditional (if ... else) statements
since they work with expressions.

• Operators
– ! (logical NOT)
– && (logical AND)
– || (logical OR)

• 1'b1 && 1'b1 = 1
• 1'b1 && 1'b0 = 0
• 1'b1 && 1'bx = x
• 1'b1 || 1'b0 = 1
• 1'b0 || 1'b0 = 0
• 1'b0 || 1'bx = x
• ! 1'b1 = 0
• ! 1'b0 = 1

Reduction Operators

• Reduction operators operate on all the bits of an operand vector and
return a single-bit value.

• These are the unary (one argument) form of the bit-wise operators above.

• Operators

– & (reduction AND)

– | (reduction OR)

– ~& (reduction NAND)

– ~| (reduction NOR)

– ^ (reduction XOR)

– ~^ or ^~(reduction XNOR)

& 4'b1001 = 0

& 4'bx111 = x

~& 4'b1001 = 1

~& 4'bx001 = 1

~& 4'bz001 = 1

|4'b1001 = 1

| 4'bx000 = x

 ~| 4'b1001 = 0

 ~| 4'bx001 = 0

 ~| 4'bz001 = 0

 ^ 4'b1001 = 0

 ^ 4'bx001 = x

 ~^ 4'b1001 = 1

 ~^ 4'bx001 = x

Shift Operators

• Shift operators shift the first operand by the number
of bits specified by the second operand.

• Vacated positions are filled with zeros for both left
and right shifts (There is no sign extension).

• Operators

– << (shift left)

– >> (shift right)

• 4'b1001 << 1 = 0010

• 4'b10x1 << 1 =

• 4'b10z1 << 1 =

• 4'b1001 >> 1 = 0100

• 4'b10x1 >> 1 =

• 4'b10z1 >> 1 =

• 4'b1001 << 1 = 0010

• 4'b10x1 << 1 = 0x10

• 4'b10z1 << 1 = 0z10

• 4'b1001 >> 1 = 0100

• 4'b10x1 >> 1 = 010x

• 4'b10z1 >> 1 = 010z

Concatenation Operator

• The concatenation operator combines two or
more operands to form a larger vector.

• Operators

– {}(concatenation)

Replication Operator

• The replication operator makes multiple
copies of an item.

• Operators

– {n{item}} (n fold replication of an item)

Conditional Operator: “?”

• Conditional operator is like those in C/C++. They evaluate one
of the two expressions based on a condition.

• It will synthesize to a multiplexer (MUX).

• Operators
– (cond) ? (result if cond true):

 (result if cond false)

5.10. Operator Precedence

• Table 5.1 shows the precedence of operators
from highest to lowest.

• Operators on the same level evaluate from left
to right. It is strongly recommended to use
parentheses to define order of precedence
and improve the readability of your code.

