
Design with Verilog

Chap 6: Introduction to

HDL - 1
Credit to: MD Rizal Othman
Faculty of Electrical & Electronics Engineering
Universiti Malaysia Pahang

Ext: 6036

What is “HDL”?

• HDL = Hardware Description Language

• A text-based method for describing hardware

to a synthesis tool

Hardware Description Languages (HDL)

• Verilog

– Gateway Design
Automation (1983;
proprietary)

– Acquired by Cadence
1989

– IEEE standard in 1995
and 2001

• VHDL

– Origins in DoD VHSIC

program (1980’s)

– IEEE standard in 1987

Discussion

�Verilog vs. VHDL

HDL Advantages Over Schematic Entry

• Produce correct designs in less time

• Produce larger and more complex systems per

unit time

• Shifts focus to specifying functionality

• Synthesis tools automate details of connecting

gates and devices

Key Advantages of HDL-Based Design Methodology

• Operate at higher level of abstraction

• Can debug earlier (behavioral simulator)

• Parameterized design, easy to make wholesale

modifications to a design (e.g., bus width)

Key Advantages of HDL-Based Design Methodology

• Can quickly specify desired behavior

– Example: Up-counter with reset

if (reset == 1)

count <= 0;

else

count <= count + 1;

Key Advantages of HDL-Based Design Methodology

• Can easily target multiple devices (eases

product migration)

HDL

FPGA ASIC

Key Advantages of HDL-Based Design Methodology

• HDL is more universal than schematic tools

• Promotes design reuse

• Promotes integration of third party designs, or

IP (intellectual property)

What HDL is NOT:

HDL is not a programming language
(HDL is a description language)

Synthesizable Subset

• Verilog (and VHDL) began as simulation and

modeling tools

• Hardware synthesis developed during the

1990’s

• Need to use a subset of Verilog and specific

coding styles to allow synthesis tool to realize

correct hardware

Synthesizable Subset

Synthesizable

Verilog

Verilog

Use this to write

testbenches for

behavioral simulation

Use this to

make hardware

in FPGA

Design Methodologies

• Two main types of design methodologies:
1) Top-down design

2) Bottom-up design

1. Top-down

• First, top-level block is identified

• Then, the blocks in the next lower level are
defined

• This process continues until all level in the
structure have been defined

2. Bottom-up design

• The smaller cells as building blocks is created

first

• Then, tie the smaller blocks together to form a

building block of the next level

• This process continues until the top level is

reached

Ex. Four-bit Ripple Adder

• Another example of top-down methodology

BASIC LEXICAL ELEMENTS AND DATA TYPES

1. Identifier

1. identifier is an unique name to an object, such as eq1, x, y
or out

– composed of letters, digits, the underscore character(-),
and the dollar sign ($)

– the first character of an identifier must be a letter or
underscore

– a good practice to give an object a descriptive name. e.g,
mem-addr-en is more meaningful than mae for a memory
address enable signal

– Verilog is a case-sensitive language, thus data-bus, Data-
bus, and DATA_BUS refer to three different objects

– To avoid confusion, refrain from using the case to create
different identifiers

2. Keywords

• predefined identifiers

that are used to

describe language

constructs

• Use boldface/blue color

for Verilog keywords

• Ex: module, wire

3. White space

• White space, which
includes the space, tab,
and newline characters,
is used to separate
identifiers and can be
used freely in the
Verilog code

• use proper white spaces
to format the code and
make it more readable

Bad Code : Never write code like this

module addbit(a,b,ci,sum,co); input
a,b,ci;output sum co; wire
a,b,ci,sum,co;endmodule

Good Code : Nice way to write code

module addbit (a, b, ci, sum, co);

input a;

input b;

input ci;

output sum;

output co;

wire a;

wire b;

endmodule

4. Comments

• for documentation purposes and will be ignored
by software

• Verilog has two forms of comments.

– A one-line comment starts with //

// This is a comment

– A multiple-line comment is encapsulated between /*
and */,

/* This is comment line I.

This is comment line 2.

This is comment line 3. */

DATA TYPES

1. Four-value system
– Four basic values are used in most data types:

– 0: for "logic Ow, or a false condition

– I: for "logic I", or a true condition

– z: for the high-impedance state

– x: for an unknown value

• z value corresponds to the output of a tri-state buffer

• x value is usually used in modeling and simulation,

representing a value that is not 0, 1, or z, such as an

uninitialized input or output conflict

2. Data type groups

Verilog has two main groups of data types: net and variable

2.1 net group

– The data types in the net group represent the physical

connections between hardware components

– used as the outputs of continuous assignments and as

the connection signals between different modules

– wire is the most commonly used data type in this

group

• A wire represents a physical wire in a circuit and
is used to connect gates or modules.

• A wire does not store its value but must be
driven by a continuous assignment statement or
by connecting it to the output of a gate or
module.

• Syntax

– wire [msb:lsb] wire_variable_list;

– wand [msb:lsb] wand_variable_list;

– wor [msb:lsb] wor_variable_list;

– tri [msb:lsb] tri_variable_list;

– The wire data type represents a 1-bit signal

wire pO, pl; // two 1-bit signals

– Representing a collection of signals is grouped into

a bus

wire [31:0]addr; // 32- bit address

wire [0:7] revers-data; // ascending index should be avoided

– Representing a two-dimensional array e.g memory

wire [3:0] mem1 [31:0] ; // 32-by-4 memory

2.2 variable group

• The data types in the variable group represent
abstract storage in behavioral modeling

• used in the outputs of procedural assignments

• There are five data types in this group: reg,
integer, real, time, and realtime

• The most commonly used data type in this group
is reg and it can be synthesized

• The last four data types can only be used in
modeling and simulation

• Declare type reg for all data objects on the left
hand side of expressions in procedural
assigment (inital and always block), or functions.

• A reg is the data type that must be used for
latches, flip-flops and memory.

• In multi-bit registers, data is stored as unsigned
numbers and no sign extension is done.

• Syntax

– reg [msb:lsb] reg_variable_list;

• Examples

3. Number representation

• A number/constant in Verilog can be represented in

various formats. Its general form is

• [sign] [size] ' [base] [value]

• The [base] term specifies the base of the number,

which can be the following:

– b or B: binary

– o or 0: octal

– h or H: hexadecimal

– d or D: decimal

• The [value] term specifies the value of the

number in the corresponding base. The

underline character (_) can be included for

clarity

• The [size] term specifies the number of bits in

a number. It is optional. The number is known

as a sized number when a [size] term exists

and is known as an unsized number otherwise.

Sized number

• A sized number specifies the number of bits
explicitly. If the size of the value is smaller
than the [size] term specified, zeros are
padded in front to extend the number. except
in several special cases.

• The z or x value is padded if the MSB of the
value is z or x, and the MSB is padded if the
signed data type is used. Several sized number
examples are shown in the top portion of
Table 1.2.

Unsized number

• An unsized number omits the [size] term.

• Its actual size depends on the host computer
but must be at least 32 bits. Assume that 32
bits are used in the host machine.

• The ' [base] term can also be omitted if the
number is in decimal format.

• Several unsized number examples are shown
in the bottom portion of Table 1.2.

Program Skeleton

• As its name indicates, HDL is

used to describe hardware.

When we develop or

examine a Verilog code, it is

much easier to comprehend

If we think in terms of

“hardware organization“

rather than "sequential

algorithm.“

• The basic program skeleton

for Verilog coding as Code

1.1:

Code 1.1

Port declaration

• The module declaration and port declaration of Code 1.1 are:
module eq1

(

input wire iO, il,

output wire eq

) ;

• The i/o declaration specifies the modes, data types, and names of the module's i/o
ports. The simplified syntax is
module [module-name]

(

[model [data-type] [port-names] ,

[mode] [data-type] [port-names] ,

. . .

[mode] [data-type] [port-names]

);

• The [mode] term can be input, output, or inout, which represent the input,
output, or bidirectional port, respectively. Note that there is no comma in the last
declaration.

• The [data-type] term can be omitted if it is wire.

Program body

• Unlike a program in the C language, in which the
statements are executed sequentially, the
program body of a synthesizable Verilog module
can be thought of as a collection of circuit parts.
These parts are operated in parallel and executed
concurrently.

• There are several ways to describe a part:
– Continuous assignment

– "Always block"

– Module instantiation

• The first way to describe a circuit part is by using a continuous assignment.

It is useful for simple combinational circuits. Its simplified syntax is:

assign [signal_name] = [expression] ;

• Each continuous assignment can be thought as a circuit part. The signal on

the left-hand side is the output and the signals used in the right-hand-side

expression are the inputs.

• The expression describes the function of this circuit. For example, consider

the statement:

assign eq = p0 I p1;

• It is a circuit that performs the or operation. When p0 or p1 changes its

value, this statement is activated and the expression is evaluated. The new

value is assigned to eq after

• The second way to describe a circuit part is by using an

always block. More abstract procedural assignments are used

inside the always block and thus it can be used to describe

more complex circuit operation. The always block will be

discussed in next section.

• The third way to describe a circuit part is by using module

instantiation. Instantiation creates an instance of another

module and allows us to incorporate predesigned modules as

subsystems of the current module. Instantiation will be

discussed in next section.

Signal declaration

• The declaration portion specifies the internal
signals and parameters used in the module.

• The internal signals can be thought of as the
interconnecting wires between the circuit parts,

• as shown in Figure 1.1.

• The simplified syntax of signal declaration is

• [data_type] [port_names];

• Two internal signals are declared in Code 1.1 :

wire p0, p1;

