
Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 1

Logic Design Implementation
Technologies

1. Programmable Logic Devices (PLD)

• Programmable Logic Array (PLA)

• Programmable Array Logic (PAL)

2. Introduction to FPGA & CPLD.

3. Introduction to Hardware Description Language (HDL)

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 2

The complexity of a chip

VLSI
•>1000 gates

MSI
•100 – 1000
gates

LSI
•10 – 100
gates

SSI
•1 – 10 gates

MSI

components

adders

comparators

Encoders

Mux /
demux

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 3

Basic Logic Components

Logic
Components

Fixed Logic

Standard
cells

Cell- based
design

Look-up
Table

ROM

MUX

FPGA

Template
based Logic

Decoder

PLDs

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 4

Programmable Logic Devices
(PLDs)

Types of PLDs

General structure • • •

inputs

AND

array

• • •

outputs

OR

array product

terms

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 5

example:

F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix
1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs

 term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0

B'C – 0 1 0 0 0 1

AC' 1 – 0 0 1 0 0

B'C' – 0 0 1 0 1 0

A 1 – – 1 0 0 1
reuse of terms

Enabling concept

• Shared product terms among outputs

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 6

PLA before programming

• All possible connections are available before "programming"

– in reality, all AND and OR gates are NANDs

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 7

(a) Before programming. (b) After programming.

Programming by blowing
fuses

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 8

A B C

F1 F2 F3 F0

AB

B'C

AC'

B'C'

A

After programming

• Unwanted connections are "blown"
– fuse (normally connected, break unwanted ones)

– anti-fuse (normally disconnected, make wanted connections)

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 9

(a)Unprogrammed and-gate.

(b)Unprogrammed or-gate.

(c)Programmed and-gate
realizing the term ac

(d)Programmed or-gate
realizing the term a + b.

(e)Special notation for an
and-gate having all its
input fuses intact.

(f) Special notation for an or-
gate having all its input
fuses intact

(g)And-gate with non-fusible
inputs.

(h)Or-gate with non-fusible
inputs.

PLA notation.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 10

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable logic array
example

• Multiple functions of A, B, C
– F1 = A B C

– F2 = A + B + C

– F3 = A' B' C'

– F4 = A' + B' + C'

– F5 = A xor B xor C

– F6 = A xnor B xnor C

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 11

PALs and PLAs

PAL

Programmable array
logic

constrained topology of
the OR array

PLA

Programmable logic
array

unconstrained fully-
general AND and OR
arrays

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 12

A simple four-input, three-output PAL device.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 13

An example of using a PAL device to realize two

Boolean functions. (a) Karnaugh maps. (b) Realization.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 14

minimized functions:

W = A + BD + BC
X = BC'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example

• BCD to Gray code converter

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 15

not a particularly good
candidate for PAL/PLA

implementation since no terms
are shared among outputs

however, much more compact
and regular implementation

when compared with discrete
AND and OR gates

A B C D

minimized functions:

W = A + BD + BC
X = B C'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

PALs and PLAs: design example
(cont’d)

• Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 16

4 product terms

per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: design example
(cont’d)

• Code converter: programmed PAL

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 17

EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: another design
example

• Magnitude comparator

A B C D EQ NE LT GT
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0

minimized functions:
EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’ NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD GT = AC’ + ABC + BC’D’

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 18

Activity

• Map the following functions to the PLA below:

– W = AB + A’C’ + BC’

– X = ABC + AB’ + A’B

– Y = ABC’ + BC + B’C’

A B C

W X Y

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 19

Activity (cont’d)

• 9 terms won’t fit in a 7 term PLA

– can apply concensus theorem
to W to simplify to:
W = AB + A’C’

• 8 terms wont’ fit in a 7 term PLA

– observe that AB = ABC + ABC’

– can rewrite W to reuse terms:
W = ABC + ABC’ + A’C’

• Now it fits

– W = ABC + ABC’ + A’C’

– X = ABC + AB’ + A’B

– Y = ABC’ + BC + B’C’

• This is called technology mapping

– manipulating logic functions
so that they can use available
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 20

Limitations of PLAs and PALs

These chips are limited to fairly modest

size, typically supporting a combined

number of inputs plus outputs of not more

than 32.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 21

Introduction to
FPGA & CPLD

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 22

FPGA and CPLD

1. FPGA - Field-Programmable Gate Array.

2. CPLD - Complex Programmable Logic Device

3. FPGA and CPLD is an advance PLD.

4. Support thousands of gate where as PLD only support

hundreds of gates.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 23

Complex Programmable
Logic Devices(CPLDs)

A CPLD comprises multiple PAL-like blocks on a single

chip with internal wiring resources to connect the

circuit blocks.

It is made to implement complex circuits that cannot be

done on a PAL or PLA.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 24

CPLD – Notable supplier

• Altera

– MAX CPLD series

• Atmel

– The ATF15xxBE family

• Cypress Semiconductor

– Ultra37000 family

• Lattice Semiconductor

– ispMACH 4000ZE CPLD family

• Xilinx

– CoolRunner™-II CPLDs

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 25

CPLD Architecture

 Row and column

interconnects

provide signal

interconnects

between the

logic array

blocks (LABs).

 10 logic

elements (LEs)

in each LAB

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 26

CPLD - Logic Array Blocks

• Each LAB consists of 10 LEs, LE carry chains, LAB control signals,
a local interconnect, a look-up table (LUT) chain, and register chain
connection lines.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 27

CPLD

1. CPLD featured in common PLD:-

I. Non-volatile configuration memory – does not need an

external configuration PROM.

II. Routing constraints. Not for large and deeply layered logic.

2. CPLD featured in common FPGA:-

I. Large number of gates available.

II. Some provisions for logic more flexible than sum-of-product

expressions, can include complicated feedback path.

3. CPLD application:-

I. Address coding

II. High performance control logic

III. Complex finite state machines

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 28

What is an FPGA?

• An FPGA is a PLD that supports

 implementation of large logic circuits.

 It is different from others in that it does not

 contain AND or OR planes.

• Instead, it contains logic blocks as for implementation

• FPGA architecture consists of an array of logic blocks, I/O

pads, and routing channels.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 29

FPGA Architecture

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 30

What does a logic cell do?

• Each logic cell combines a few binary inputs (typically

between 3 and 10) to one or two outputs according to a

Boolean logic function specified in the user program .

• Cell's combinatorial logic may be physically

implemented as a small look-up table memory (LUT) or

as a set of multiplexers and gates.

• LUT devices tend to be a bit more flexible and provide

more inputs per cell than multiplexer cells at the

expense of propagation delay.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 31

Typical FPGAs

FPGAs can be used to implement logic circuits of more than

a few hundred thousand equivalent gates in size.

The most commonly used logic block is a lookup table (LUT)

as depicted in these figures.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 32

Field Programmable

• The FPGA's function is defined by a user's program rather

than by the manufacturer of the device.

• The program is either 'burned' in permanently or semi-

permanently as part of a board assembly process, or is

loaded from an external memory each time the device is

powered up.

• This user programmability gives the user access to

complex integrated designs .

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 33

How are FPGA programs
created?

• Individually defining the many switch connections and cell
logic functions would be a daunting task.

• This task is handled by special software. The software
translates a user's schematic diagrams or textual
hardware description language code then places and
routes the translated design.

• Most of the software packages have hooks to allow the
user to influence implementation, placement and routing
to obtain better performance and utilization of the device.

• Libraries of more complex function macros (eg. adders)
further simplify the design process by providing common
circuits that are already optimized for speed or area.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 34

FPGA – Notable Supplier

• Xillinx
– 7 Series FPGAs

– Virtex®-6 FPGAs

– Spartan®-6 FPGAs

– Virtex-5 FPGAs

– Extended Spartan-3A
FPGAs

– EasyPath™-6 FPGAs

– XA Spartan-6 FPGAs

– XA Spartan-3A FPGAs

– XA Spartan-3A DSP
FPGAs

– XA Spartan-3E FPGAs

• Altera
– Stratix® V

– Arria® II

– Cyclone® IV

– Stratix IV

– Arria

– Cyclone III

• Lattice Semiconductor
– LatticeECP3 family

– LatticeECP2™ and
LatticeECP2M™

• Actel
– IGLOO FPGAs

– ProASIC3 FPGAs

http://www.xilinx.com/products/xas3e/index.htm

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 35

FPGA

• FPGA applications:-

i. DSP

ii. Software-defined radio

iii. Aerospace

iv. Defense system

v. ASIC Prototyping

vi. Medical Imaging

vii. Computer vision

viii. Speech Recognition

ix. Cryptography

x. Bioinformatic

xi. And others.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 36

CPLDs vs. FPGAs

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 37

INTRODUCTION TO
HARDWARE DESCRIPTION
LANGUAGE

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 38

Hardware Description Language

• Similar to a typical computer programming language

• But used to describe hardware rather than a program

• IEEE standards :- VHDL (VHIC (Very High Speed Integrated

Circuit) Hardware Description Language) & Verilog

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 39

VHDL Design Flow

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 40

The Entity / Architecture pair

• The basis of all VHDL designs

• Entities can have more then one Architecture

• Architectures can have only one entity

• Entities define the interface (i.e. I/Os) for the design

• Architectures define the function of the design

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 41

The Entity Details

• Declare the input and output signals

example1

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 42

The Architecture Details

• Declare the functions

ARCHITECTURE LogicFunc OF example1 IS

BEGIN

 f <= (x1 AND x2) OR (NOT x2 AND x3);

END LogicFunc ;

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 43

The Architecture Details

• Declaration section

– Signals, constants and components local to the architecture can

be declared here

• Concurrent statements

– Where the circuit is defined

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 44

Complete code

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 45

Logical Operators

• VHDL predefines the logic operators

– NOT HIGHER PRECEDENCE

– AND

– NAND

– OR

– NOR

– XOR

– XNOR

• Note: XNOR supported in standard 1076-1993

There is no implied precedence

for these operators. If there are

two or more different operators

in an equation, the order of

precedence is from left to right

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 46

Comments

-- (Double minus sign) is the comment mark

• All text after the -- on the same line is taken as a comment

• Comments only work on a single line

• There is no block comment in VHDL

• The ISE editor does support commenting of selected areas.

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 47

Data Types

• DATA types: An ordered set of possible values define a particular

type

– Example: Type character is the ASCII character set

• VHDL is a strongly typed language

• All variables must be assigned a type

• Type conversion functions are supplied in add on functions but

are not part of the core of VHDL

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 48

Predefined Types

• Boolean FALSE, TRUE

• Bit (‘0’,’1’)

• bit_vector(“101010”)

• Integers: range -(2^31-1) to 2^31-1

• Floating real: -1.E38 to 1.0E38

• Time

• Character

• String

• Enumerated (User defined)

• Records, file & access types (Used in Simulation only)

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 49

Std_logic & std_ulogic

Not part of 1076

• Part of 1164 library

• Std_logic is a resolved type

• Std_logic is a subtype of std_ulogic

• Std_ulogic Values:
TYPE std_ulogic IS ('U', -- Uninitialized

'X', -- Forcing Unknown

'0', -- Forcing 0

'1', -- Forcing 1

'Z', -- High Impedance

'W', -- Weak Unknown

'L', -- Weak 0

'H', -- Weak 1

'-' -- Don't care

);

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 50

Standard Logic Vectors

• Defined in IEEE 1164

• Ordered set of signals

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 51

Vector Properties

• Vectors are filled from left to right, always

• Indexes are assigned ascending or descending

depending on the key word to or downto

• examples

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 52

Array Ordering

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 53

Aggregates

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 54

Concatenation

• Concatenation (&) is used to gather pieces of an array to construct a
bigger array

• Building a larger std_logic_vector from small vectors

• Building a std_logic_vector from std_logic

Note: the total width of the right hand side must be

equal to the width of the left hand side

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 55

Concurrent Statements

• Concurrent statements are Order independent!!!

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 56

Relational Operators

• = Equals

• /= Not equal

• < Ordering, less than

• <= Ordering, less than or equal

• > Ordering, greater than

• >= Ordering, greater than or equals

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 57

Process and Sequential Statements

• Processes exist inside the Architecture

• Processes have local variables

• Processes contain Sequential Statements

• Processes have a sensitivity list or an optional wait statement

• Processes execute only when a signal in the sensitivity list

changes

• Processes can be used to make clocked circuits

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 58

The Process Framework

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 59

If Statements

• Can have overlapping conditions

• Imply priority, first true condition is always taken

• Can have incomplete condition lists

• Useful to control signal assignments

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 60

Sequential If Statement

• Used inside the Process

• Can be used to control variable and signal

assignments

• Has optional elsif structure

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 61

Example Multiplexer

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 62

What Goes Into the Sensitivity List

• If a change on an input signal causes an

 IMMEDIATE change in any signal that is assigned in that

process then it should be in the sensitivity list

• If there is NO IMMEDIATE change in a signal assigned in the

process based on the change of a particular input signal, then

that input signal should NOT be in the sensitivity list

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 63

When Statement

• The

concurrent

version of the

IF statement

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 64

The Case Statement

• Used to control signal assignments

• No priority implied

• Control expression must cover all possible signal assignments

• No conditions may overlap

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 65

Sequential Case Statement

• Must be inside a

process

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 66

Select; the Concurrent Case
Statement

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 67

Signals

• Signals behave like wires within a VHDL design

• Signals can be local to an Architecture

• Signals have no MODE

• Signals can be declared in the Architecture declarative

region

• Signals must have a type

• Signals carry information between PROCESS es

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 68

Internal Signals

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 69

Attributes

• Provide additional information about many VHDL

 objects

• Can be assigned to most objects including signals,

 variables, architectures and entities

• Many attributes are predefined by VHDL, however user

 defined attributes are also allowed

• VHDL pre-defines five kinds of attributes, dependent

 on the return value type which can be:

– Value

– Function

– Signal

– Type

– Range

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 70

Value Attributes

• `right - Returns right most value in array

• `left - Returns left most value in array

• `high - Returns highest index of an array

• `low - Returns lowest index of an array

• `length - Returns the length of an array

• `ascending - Returns Boolean true if array is ascending. i.e. The

array is a to array

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 71

Value Examples

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 72

Function Attributes

• `event - Returns true if the signal had an

immediate event on it

• `active - Returns true if the signal had a scheduled

event on it in the current cycle

• `last_event - Returns time since the last event on a

signal

• `last_value - Returns the value of a signal prior to

an event

• `last_active - Returns the time since the last

scheduled event on a signal

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 73

Function Example

• Using the `event attribute to make a clocked circuit

Electronic System Design Logic Design Implementation Technologies

Nurul Hazlina 74

Rising_edge

• rising_edge is a function pre-defined in the std_logic_1164 package,

falling_edge also defined

