Electronic System Design Logic Design Implementation Technologies

Logic Design Implementation
Technologies

1. Programmable Logic Devices (PLD)
 Programmable Logic Array (PLA)
 Programmable Array Logic (PAL)

2. Introduction to FPGA & CPLD.
3. Introduction to Hardware Description Language (HDL)

Electronic System Design Logic Design Implementation Technologies

The complexity of a chip

VLSI

+>1000 gates

MSI

+100 - 1000
gates

LSI

*10-100
gates

MSI

— = comparators

SSl components

*1-10 gates

Encoders

Electronic System Design Logic Design Implementation Technologies

Basic Logic Components

Standard
cells
Fixed Logic
Cell- based
design
ROM
Logic | Look-up
Components M
FPGA
Decoder
Template
based Logic

PLDs

Electronic System Design

Programmable Logic Devices
(PLDs)

General structure

Logic Design Implementation Technologies

Types of PLDs

[([] [
inputs
AND product ' o
array array
outputs
[[]
Device AND-array OR-array
PROM Fixed Programmable
PLA Programmable |Programmable
PAL Programmable |Fixed

Electronic System Design Logic Design Implementation Technologies

Enabling concept

« Shared product terms among outputs

FO=A +BC
example: F1=AC + AB

F2=B'C + AB

F3=B'C + A

input side:

1 = uncomplemented in term
0 = complemented in term

personality matrix

product | inputs outputs — = does not participate

term A B C |FO F1 F2 F3 _
AB 1 1 —-1lo 1 1 o output side:
B'C -0 110 o o 1 1 = term connected to output
AC i - olo 1 o o 0 = no connection to output
B'C' - 0 0 (1 0 1 o0

f

A i - - 11 0o o 1 reuse of terms

Electronic System Design Logic Design Implementation Technologies

PLA before programming

« All possible connections are available before "programming"
— in reality, all AND and OR gates are NANDs

—+ ct
YIYIY
R
-
R
-/
R
-
R
-
Y\
- -_\ -_\ __\
aadviivihviivi

Electronic System Design Logic Design Implementation Technologies

Programming by blowing
fuses

a4 ——oN_o— d—0 o0—

—0MN_Oo—
==l == ey
d ——oN_ o d——o0 o—

(a) Before programming. (b) After programming.

Electronic System Design Logic Design Implementation Technologies

After programming

« Unwanted connections are "blown"
— fuse (normally connected, break unwanted ones)
— anti-fuse (normally disconnected, make wanted connections)

B
—

YIYIY| .

Electronic System Design Logic Design Implementation Technologies

. e a)Unprogrammed and-gate.
== — = HHD— @Unprog 9

g% — W (b)Unprogrammed or-gate.

a b o
b_ﬂ,n_:} — -’\‘ { ’\(—D— (c)Programmed and-gate
© realizing the term ac
a b e
g ——e a7\ -
=) >— = 1 >— (d)Programmed or-gate
) realizing the term a + b.

|
ﬁ“
+
ﬁ’
;

"‘) —(e)Special notation for an

(@ and-gate having all its
d hip Aotic input fuses intact.
*% = W = ﬁ—H—Df(f) Special notation for an or-
o gate having all its input
ab e fuses intact
a _‘“\‘ —_— . -
e—__J — I ~ I D_ (g)And-gate with non-fusible
® inputs.
- e (h)Or-gate with non-fusible
f==lT w b inputs.

Electronic System Design

&

X

—
N
w
AN
U
(@)

UUUUJJUUU

HFRFRPEFR,ROOOO>X
HFEFOORREFHEOO|Im
RPOFRLRORFL,OKFOIN
HFOOOOOOOmM
=== O[T
OCOO0OOOOO+—TM
O = = = = = =T
HFOOHHOKKFOM
HOOFROFMFOMmM

T
SZ
F6

Logic Design Implementation Technologies

Programmable logic array
example

Multiple functions of A, B, C
- F1=ABC

F2=A+B+C

F3=A'B'C

F4A=A"+B' +C'

F5 = A xor B xor C

F6 = A xnor B xnor C

full decoder as for memory address

bits stored in memory

A'B'C
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

Logic Design Implementation Technologies

Electronic System Design

PALs and PLAs

PLA

Programmable logic
array

unconstrained fully-
general AND and OR
arrays

Electronic System Design

Logic Design Implementation Technologies

A simple four-input, three-output PAL device.

)

)

!

!

(\)\//6\//(\)\|//5\//
KRN

]
]
!

X — Kk ——

]
]
!

7 NS S S S S S

v S S S S S S S

X— kK ——

!
]
]
]

JUUUL

I\

JUU

\

Y
Aelre-pue 9[qewiweI3old

Electronic System Design Logic Design Implementation Technologies

An example of using a PAL device to realize two

Boolean functions. (a) Karnaugh maps. (b) Realization.

£ ¥z P2 ¥z
00 01 11 10 00 01 11 10

ol o I 0 @ of [1) 1 0

INE ‘1] 1]0 1| o E 1 0

(a)

8]

U U U
| S —) >

T T D—fa

External connection——___

Nurul Hazlina || s

Electronic System Design Logic Design Implementation Technologies

PALs and PLAs: desigh example

BCD to Gray code converter

Z = A'B'C'D + BCD + AD' + B'CD'

A B C D|W X Y Z

0 0 0 0|0 0 0 0O

o0 0 O 1/0 0 0 1

o 0 1 o000 0 1 1

8 (1’ é é 8 (1’ i 8 minimized functions:
ST S (S T W = A + BD + BC
o 1 1 11]1 0 1 1 X =BC

1 0 O o011 0o 0 1 Y=B+C

1 0 0 111 0 0 O

1 0 1 -1|- - - -

1 1 -

Electronic System Design Logic Design Implementation Technologies
PALs and PLAs: desigh example
(cont'd)

« Code converter: programmed PLA

minimized functions:

ABCD W = A + BD + BC
\VAVAVA X=BC
y J‘ 3 A Y = B + C
— Z = A'B'C'D + BCD + AD' + B'CD'
) BD
S BC
) \ not a particularly good
K
— - candidate for PAL/PLA
|/ B implementation since no terms
¢) c are shared among outputs
T — A'B'C'D
1 — BCD
M T = T ap however, much more compact
) and regular implementation

- BCD' when compared with discrete
AND and OR gates
XY Z

W

Electronic System Design Logic Design Implementation Technologies

PALs and PLAs: desigh example

(cont'd)

B
AvAvavavi
« Code converter: programmed PAL N A
I X BD
, | BC
>proer—| 0
) BC'
SLs JL [
NM —J 0
Lok sl N 0
4 product terms 1111 E <
per each OR gate L 0
L) B
2)
L/ C
I —)
0
4
=< 0
— A'B'C'D
< BCD
=/> AD'
B'CD'

=
aadl;
<A

N

Electronic System Design

« Magnitude comparator

PR RPRRPRRRROO0OO0O0O0O0OOX

minimized functions:

HFRPRFEFPRPRPOOOOHR PP, P OOOOm

R, OOHRKFHFOOFRFFOORLEFOON

RPOFROHHORFROFFOHF,ORFRLORKFOO

EQ = AB'C'D’ + ABC'D + ABCD + AB'CD’

LT = AC+ ABD + B'CD

Logic Design Implementation Technologies

PALs and PLAs: another design

P ABGED

VA VA VA VS

BRI ABCD'
EQ NE LT GT L
1 0 0 0 s e —x A'BC'D
8 i i 8 e :)ﬁ-(ABCD
0 1 1 0 Sk) —X¥ AB'CD'
2 0 0 o D o s e
o 1 1 O —P—¥ D) X A'C
0 1 1 0 N
0 1 0 1 T) T B'D
O 1 0 1 N NS R N \
1 0 0 0 — °b
0 1 1 0 T ITF ! A'B'D
O 1 0 1 KKK 8'CD
0 1 0 1 —
0 1 0 1 “FFF) T ABC
1 0 0 0 e) (e

NE = AC' + AC + B'D + BD’

Electronic System Design

Activity

Logic Design Implementation Technologies

« Map the following functions to the PLA below:
- W=AB +AC +BC’
— X=ABC + AB’+ A'B
— Y=ABC +BC + B'C’

A BC
\VavAvS

JUJJUUU

Electronic System Design

Activity (cont’'d)

« 9termswon’tfitina 7 term PLA
— can apply concensus theorem
to W to simplify to:
W=AB + A'C
« 8termswont' fitina 7 term PLA
— observe that AB = ABC + ABC’
— can rewrite W to reuse terms:
W =ABC + ABC’ + A'C’
* Now it fits
— W=ABC + ABC' + AC
— X=ABC+AB' + A'B
— Y=ABC' +BC +B'C’
« This is called technology mapping

— manipulating logic functions
so that they can use available
resources

A

—

B C
MM

Logic Design Implementation Technologies

ABC

ABC'

AC

AB’

X*

A'B

A

BC

B'C’

LUV

=-¢C
><—<§
<~ ~__F

Electronic System Design Logic Design Implementation Technologies

Limitations of PLAs and PALs

These chips are limited to fairly modest
size, typically supporting a combined
number of inputs plus outputs of not more
than 32.

Electronic System Design Logic Design Implementation Technologies

Introduction to
FPGA & CPLD

Electronic System Design Logic Design Implementation Technologies

FPGA and CPLD

> W

FPGA - Field-Programmable Gate Array.
CPLD - Complex Programmable Logic Device
FPGA and CPLD is an advance PLD.

Support thousands of gate where as PLD only support
hundreds of gates.

Electronic System Design Logic Design Implementation Technologies

Complex Programmable
Logic Devices(CPLDs)

A CPLD comprises multiple PAL-like blocks on a single
chip with internal wiring resources to connect the
circuit blocks.

It is made to implement complex circuits that cannot be
done on a PAL or PLA.

Electronic System Design Logic Design Implementation Technologies

CPLD - Notable supplier

« Altera
— MAX CPLD series
 Atmel
— The ATF15xxBE family
« Cypress Semiconductor
— Ultra37000 family
« Lattice Semiconductor
— ISpMACH 4000ZE CPLD family
o Xilinx
— CoolRunner™-|| CPLDs

Electronic System Design

CPLD Architecture

MAX | Device Block Diagram

Mt tiTrack:

N

Irteraonract

Logic Design Implementation Technologies

d Row and column

Interconnects
provide signal
Interconnects
between the
logic array
blocks (LABS).

10 logic
elements (LES)

In each LAB

Electronic System Design

Logic Design Implementation Technologies

CPLD - Logic Array Blocks

Each LAB consists of 10 LEs, LE carry chains, LAB control signals,
a local interconnect, a look-up table (LUT) chain, and register chain

connection lines.

S

A\~

O\~

-

Row hiferonnect

v

S

IR

L

Coluren nferconnecs

Fast 1D connaection

™ o I0E (i)

Drirectlink

interconnact fom
adpcant LAB
ar l2OE

LEDQ
Fast WD connaction
to IOE (1) LEA
LEZ
Dirzctlink
intarconnact from LEA
adjpocant LABR
or IDE LE 4
LES
LEE
Dirzctlink
intarconnect 1o - LET
adjpcant LAB
or IE LE2
LES
Logie Shermen T

LAE

Drirectlink

= intarconnact to
adpcant LAB
ar l2OE

Local Mfemannect

Electronic System Design Logic Design Implementation Technologies

CPLD

1.

CPLD featured in common PLD:-

|. Non-volatile configuration memory — does not need an
external configuration PROM.

II. Routing constraints. Not for large and deeply layered logic.
CPLD featured in common FPGA:-
. Large number of gates available.

Il. Some provisions for logic more flexible than sum-of-product
expressions, can include complicated feedback path.

CPLD application:-
|. Address coding
II. High performance control logic
lll. Complex finite state machines

Electronic System Design

Logic Design Implementation Technologies

What is an FPGA?

 An FPGA is a PLD that supports
Implementation of large logic circuits.
It is different from others in that it does not
contain AND or OR planes.
* Instead, it contains logic blocks as for implementation

 FPGA architecture consists of an array of logic blocks, 1/0O
pads, and routing channels.

Electronic System Design Logic Design Implementation Technologies

FPGA Architecture

— __ [
il
— I I

[

'// 15 Pad
— -

-
.

—1
|]
Il I N Il L ogic Block
Logic Block SwitcH Block Wire Segment
S R NN
. -y~ by
I - &)
-] > , — L]
Py ‘l_‘_o R —’_:

FProgrammeabls
Vifire Swwitch

N/

Electronic System Design Logic Design Implementation Technologies

What does a logic cell do?

« Each logic cell combines a few binary inputs (typically
between 3 and 10) to one or two outputs according to a
Boolean logic function specified in the user program .

« Cell's combinatorial logic may be physically
Implemented as a small look-up table memory (LUT) or
as a set of multiplexers and gates.

« LUT devices tend to be a bit more flexible and provide
more inputs per cell than multiplexer cells at the
expense of propagation delay.

Electronic System Design Logic Design Implementation Technologies

]
Typical FPGAs
Xy =
o1 ™
| Uim=y
A three-mnput LUT P S
oile | :D_
L [f
x 0/1
01
o L~ 14
o1
i 1 01 —T
.
o1 ™ x3 :
A rwo-input lookup table

Ho

FPGAs can be used to implement logic circuits of more than
a few hundred thousand equivalent gates in size.

The most commonly used logic block is a lookup table (LUT)
as depicted in these figures.

Electronic System Design Logic Design Implementation Technologies

Field Programmable

 The FPGA's function is defined by a user's program rather
than by the manufacturer of the device.

« The program is either 'burned'in permanently or semi-
permanently as part of a board assembly process, or is
loaded from an external memory each time the device is
powered up.

« This user programmability gives the user access to
complex integrated designs .

Electronic System Design Logic Design Implementation Technologies

How are FPGA programs
created?

* Individually defining the many switch connections and cell
logic functions would be a daunting task.

« This task is handled by special software. The software
translates a user's schematic diagrams or textual
hardware description language code then places and
routes the translated design.

* Most of the software packages have hooks to allow the
user to influence implementation, placement and routing
to obtain better performance and utilization of the device.

 Libraries of more complex function macros (eg. adders)
further simplify the design process by providing common
circuits that are already optimized for speed or area.

Electronic System Design Logic Design Implementation Technologies

FPGA - Notable Supplier

e Xillinx * Altera .
— 7 Series FPGAs - Stratix® V
: — Arria® I
— Virtex®-6 FPGAs ®
— Cyclone® IV
— Spartan®-6 FPGAs _ Stratix [V
— Virtex-5 FPGAs — Arria
— Extended Spartan-3A — Cyclone I
FPGAs « Lattice Semiconductor
— EasyPath™-6 FPGAS — LatticeECP3 family
— XA Spartan-6 FPGAs - LatticeECPZTMTSnd
— XA Spartan-3A FPGAs LatticeECP2M
« Actel

— XA Spartan-3A DSP
FPGAS — IGLOO FPGAs

— XA Spartan-3E FPGAs — ProASIC3 FPGAs

http://www.xilinx.com/products/xas3e/index.htm

Electronic System Design Logic Design Implementation Technologies

FPGA

. FPGA applications:-
. DSP
Ii. Software-defined radio
lil. Aerospace
Iv. Defense system
v. ASIC Prototyping
vi. Medical Imaging
vii. Computer vision
viil. Speech Recognition
IX. Cryptography
X. Bioinformatic
XIl. And others.

Electronic System Design Logic Design Implementation Technologies

CPLDs vs. FPGAs

CPLD FPGA
Complex Programmable Logic Field-Programmable Gate Array
Device
]] H B B 8 58
L
a & O
H 5 8 8 5
o o0 e me
Architecture PAL2Z2V10-like Gate aray-like
More Combinational More Registers + RAM
Density Lew-te-medium Medium-to-high
0.5-10K logic gates 1K to 1M systemn gates
Performance Predictable timing Application dependent
Lp to 250 MHz today Up to 150 MHz today
Interconnect *Crossbar Switch® Incremental

Logic Design Implementation Technologies

INTRODUCTION TO
HARDWARE DESCRIPTION
LANGUAGE

Electronic System Design

Logic Design Implementation Technologies

Hardware Description Language

« Similar to a typical computer programming language
« But used to describe hardware rather than a program

« |EEE standards :- VHDL (VHIC (Very High Speed Integrated
Circuit) Hardware Description Language) & Verilog

Electronic System Design Logic Design Implementation Technologies

VHDL Design Flow

Specify Design|

1 White VHDL Code

{ Simulate VHDL

1 Synthesize Design

Implement design

/= Verify Timing

Feed Back to any 2
up stream point. Done

Electronic System Design Logic Design Implementation Technologies

The Entity / Architecture pair

* The basis of all VHDL designs

« Entities can have more then one Architecture

« Architectures can have only one entity

« Entities define the interface (i.e. I/Os) for the design
« Architectures define the function of the design

Electronic System Design Logic Design Implementation Technologies

The Entity Details

« Declare the input and output signals

entity entity _name is ENTITY examplel IS
generic (generic_list); PORT (x1,x2,x3 :IN BIT;
e f . OUT BIT);
pOI't (port_llst), END examplel ;
end entity _name;
examplel (Port_names : MODE type);
X, MODE types: in, out, inout or buffer
Xy =
— f

—

Electronic System Design Logic Design Implementation Technologies

The Architecture Details

 Declare the functions

architecture architecture _name of entity_name is
declaration section

begin
concurrent statements

end architecture _name;

ARCHITECTURE LogicFunc OF examplel IS
BEGIN

f <= (X1 AND x2) OR (NOT x2 AND x3);
END LogicFunc;

Electronic System Design Logic Design Implementation Technologies

The Architecture Details

» Declaration section
— Signals, constants and components local to the architecture can
be declared here

 Concurrent statements
— Where the circuit is defined

Electronic System Design Logic Design Implementation Technologies

Complete code

ENTITY examplel IS
PORT (x1,x2,x3 :IN BIT;
f : OUT BIT);
END examplel ;

ARCHITECTURE LogicFunc OF examplel IS
BEGIN

f <= (x1 AND x2) OR (NOT x2 AND x3) ;
END LogicFunc ;

Electronic System Design Logic Design Implementation Technologies

Logical Operators

 VHDL predefines the logic operators
— NOT -> HIGHER PRECEDENCE

— AND

_ NAND There is no implied precedence
_OR for these operators. If there are
_ NOR two or more different operators
— XOR In an equation, the order of

—_ XNOR precedence is from left to right

* Note: XNOR supported in standard 1076-1993

Electronic System Design Logic Design Implementation Technologies

Comments

-- (Double minus sign) is the comment mark

* All text after the -- on the same line is taken as a comment
« Comments only work on a single line

* There is no block comment in VHDL

* The ISE editor does support commenting of selected areas.

Electronic System Design Logic Design Implementation Technologies

Data Types

* DATA types: An ordered set of possible values define a particular
type

— Example: Type character is the ASCII character set

* VHDL is a strongly typed language

* All variables must be assigned a type

 Type conversion functions are supplied in add on functions but
are not part of the core of VHDL

Electronic System Design Logic Design Implementation Technologies

Predefined Types

* Boolean FALSE, TRUE

* Bit (‘0’,’1")

* bit_vector(“1010107)

* Integers: range -(2"31-1) to 2*31-1

* Floating real: -1.E38 to 1.0E38

* Time

* Character

* String

« Enumerated (User defined)

* Records, file & access types (Used in Simulation only)

Electronic System Design Logic Design Implementation Technologies

Std_logic & std_ulogic

Not part of 1076
 Part of 1164 library
« Std_logic is a resolved type
» Std_logic is a subtype of std_ulogic
« Std_ulogic Values:
TYPE std_ulogic IS ('U', -- Uninitialized
‘X', -- Forcing Unknown
'0', -- Forcing O
'1', -- Forcing 1
'Z', -- High Impedance
‘W', -- Weak Unknown

'L, -- Weak O
'H', -- Weak 1
'-' --Don't care
);

Electronic System Design Logic Design Implementation Technologies

Standard Logic Vectors

* Defined in IEEE 1164
 Ordered set of signals

library IEEE,;
use IEEE.std logic 1164.all;
entity busses is

port (
In_busl, In_bus2 :in std logic vector (7 downto 0);
In_bus3 :in std logic vector (0 to 7);
Qut_bus - out std logic vector (7 downto 0)
);

end busses;

Electronic System Design Logic Design Implementation Technologies

Vector Properties

« Vectors are filled from left to right, always

* Indexes are assigned ascending or descending
depending on the key word to or downto

« examples

In busl, In bus2 :in std logic vector (7 downto 0);

In_bus3 -in std logic vector (0 to 7);

Out_bus : out std_logic_vector (7 downto 0)

In_busl <=*10110010; - IN BUS1(7)=1, IN BUSI1{0) =10

In bus2(3)<="1"; - IN BUS2 = (U,U,U,U,1,U,U,U,)
In_bus2(6 downto 4) <="101"; - IN BUS2 =(U,1,0,1,U,UU,U,)
In_bus3 <=*10110010; - IN BUS3(7)= 0, IN_BUS3(0) =1

Electronic System Design Logic Design Implementation Technologies

Array Ordering

Busl1 : std logic vector (3 downto 0);
Bus2 : std logic vector (0 to 3);

Busl <= Bus2;
Bus1(3)« Bus2(0)
Bus1(2)« Bus2(1)
Bus1(1)« Bus2(2)
Bus1(0)« Bus2(3)

Electronic System Design Logic Design Implementation Technologies

Aggregates

signal X bus, Y bus, Z bus :std logic vector (3 downto 0);
signal Byte bus : std logic vector (7 downto 0);

« Aggregates can be usedtofill a std_logic_vector in sections
Byte bus=={ 7== ‘1", 6 downto 4 == *0°, others == *17),

-- Byte bus=10001111
-- Others refers to all the values of the array not yet mentioned

« Aggregates can be usedto set all members of a std_logic
vector to a particular value without knowing the width of the
std_logic_vector

Z bus === {(others=="0"};

Electronic System Design Logic Design Implementation Technologies

Concatenation

» Concatenation (&) is used to gather pieces of an array to construct a
bigger array

signal x_bus, y bus, z_bus : std_logic vector (3 downto 0);
signal byte bus :std logic vector (7 downto 0);
signal a,b,c,d . std_logic;

* Building a larger std_logic_vector from small vectors
Byte bus<=x bus &y bus; -- Concatenation operator &
* Building a std_logic_vector from std_logic

Zz bus <=a&c&b&d;

Note: the total width of the right hand side must be
equal to the width of the left hand side

Electronic System Design Logic Design Implementation Technologies

Concurrent Statements

« Concurrent statements are Order independent!!!

Oy
DL

—)

o|o

Z<=Xor Y; X<=A and B;
Y<=C and D; = Y<=C and D;
X<=A and B; Z<=XorY:

Electronic System Design Logic Design Implementation Technologies

Relational Operators

Equals

Not equal

Ordering, less than

Ordering, less than or equal
Ordering, greater than
Ordering, greater than or equals

Electronic System Design Logic Design Implementation Technologies

Process and Sequential Statements

* Processes exist inside the Architecture
 Processes have local variables

* Processes contain Sequential Statements
* Processes have a sensitivity list or an optional wait statement

* Processes execute only when a signal in the sensitivity list
changes

* Processes can be used to make clocked circuits

Electronic System Design Logic Design Implementation Technologies

The Process Framework

Label:-- optional label

process (optional sensitivity list)
-- local process declarations
begin

-- sequential statements

-- optional wait statements

end process;

Processes must have a sensitivity list
or a wait statement, but never both

Electronic System Design Logic Design Implementation Technologies

If Statements

« Can have overlapping conditions

* Imply priority, first true condition is always taken
« Can have incomplete condition lists

 Useful to control signal assignments

Electronic System Design Logic Design Implementation Technologies

Sequential If Statement

» Used inside the Process

« Can be used to control variable and signal
assignments

« Has optional elsif structure

if <condition> then
sequential statements
elsif <condition> then
sequential statements
else

sequential statements
end if;

Electronic System Design

Logic Design Implementation Technologies

MUX_IN1

MUX_IN2

MUX_IN3

Example Multiplexer

MUX_OUT

MUX_ING

SEL(1:0)

library IEEE;

use IEEE.std logic 1164.all;

entity MUX is

port (MUX_IN1, MUX_IN2, MUX_IN3, MUX IN4 : in std_logic;

SEL :in std logic vector (1 downto 0);
MUX OUT : out std logic);

end MUX;

architecture IF. MUX arch of MUX is

bhegin

process (SEL, MUX IN1, MUX IN2, MUX IN3, MUX IN4)
hegin
if SEL = "00" then
MUX OUT==MUX INI1;
elsif SEL ="01" then
MUX OUT==MUX IN2;
elsif SEL = "10" then
MUX OUT ==MUX_IN3;
else
MUX OUT ==MUX_IN4;
end if;
end process;

end IF MUX arch; Aunet SpeedWay Design Workshop™

Electronic System Design Logic Design Implementation Technologies

What Goes Into the Sensitivity List

« If a change on an input signal causes an

IMMEDIATE change in any signal that is assigned in that
process then it should be in the sensitivity list

* If there is NO IMMEDIATE change in a signal assigned in the
process based on the change of a particular input signal, then
that input signal should NOT be in the sensitivity list

Electronic System Design Logic Design Implementation Technologies

When Statement

* The
LABEL]: -- optional label
concurrent SIG NAME <= <expression> when <condition> else
. <expression> when <condition> else
version of the expression.

|F statement

architecture WHEN MUX arch of MU X is
b egin

MUX OUT <= MUX IN1 when SEL="00" else
MUX IN2 when SEL="01" else
MUX IN3 when SEL="10" else
MUX IN4;
end WHEN MUZX arch;

Electronic System Design Logic Design Implementation Technologies

The Case Statement

» Used to control signal assignments

* No priority implied

 Control expression must cover all possible signal assignments
* No conditions may overlap

Electronic System Design Logic Design Implementation Technologies

Sequential Case Statement

* Must be inside a
architecture CASE MUX arch of MUX is

p Focess hegin
process (MUX IN1, MUX IN2, MUX IN3, MUX_IN4, SEL)
hegin
< AT case sel is
case <expres 81911 is e 100" =
when <choices> == MUX_OUT <= MUX_INI;
< ~ when "01" ==
statemegts MUX OUT == MUX_INZ;
when <choices> == when "10" =>
—statements> MUX OUT == MUX_IN3;
when others ==
when others => MUX_OUT <= MUX_IN4;
<statements=> end Qg

end process;
end case; end CASE MUX _arch;

Electronic System Design Logic Design Implementation Technologies

Select; the Concurrent Case
Statement

LABEL1: -- optional label
with <choice expression> select
SIG NAME <= <expression> when <choices=>,
<expression> when <choices>,
<expression> when others;

architecture SEL. MUX arch of MUX is
hegin
with SEL select
MUX OUT==MUX IN1 when "00",

MUX IN2 when "01",
MUX IN3 when "10",
MUX IN4 when others;

end SEL. MUX arch;

Electronic System Design Logic Design Implementation Technologies

Signals

 Signals behave like wires within a VHDL design

* Signals can be local to an Architecture

« Signals have no MODE

* Signals can be declared in the Architecture declarative
region

 Signals must have a type

« Signals carry information between PROCESS es

signal signal_name1, signal_namez? . type;
or

signal signal_name1:type;

signal signal_nameZ:type;

Electronic System Design Logic Design Implementation Technologies

Internal Signals

entity show_sig

A
o1

B

CLK
C Q2

D

entity show sigis
port (A, B, C, D, CLK: in std logic;
Ql, Q2 - out std_logic);
end show_sig;
architecture show sig arch of show_sig is
signal D1, D2 : std logic; -- Not visible outside architecture
begin

Electronic System Design Logic Design Implementation Technologies

Attributes

* Provide additional information about many VHDL
objects

» Can be assigned to most objects including signals,
variables, architectures and entities

» Many attributes are predefined by VHDL, however user
defined attributes are also allowed

* VHDL pre-defines five kinds of attributes, dependent
on the return value type which can be:

— Value

— Function

— Signal

— Type

— Range

Electronic System Design Logic Design Implementation Technologies

Value Attributes

* ‘right - Returns right most value in array
* "|left - Returns left most value in array

* "high - Returns highest index of an array
* ‘low - Returns lowest index of an array

* ‘length - Returns the length of an array

 "ascending - Returns Boolean true if array is ascending. i.e. The
array is a to array

Electronic System Design Logic Design Implementation Technologies

Value Examples

signal demo array : std logic vector (7 downto O);
signal length integer : integer := demo array “length;
signal i int low int:integer;

sicnal A bit, B bit: std logic;

demo array <= “100010007;

A bit <= demo array’right; -- A bit =0

B bit <=demo array’left; --B bit=1

hi it<=demo array’high; —-h1 int=7

low mt<=demo array’low; --low mnt=0

-- Note length mteger = 8. It was pre-assigned.

Electronic System Design Logic Design Implementation Technologies

Function Attributes

 "‘event - Returns true if the signal had an
Immediate event on it

* "active - Returns true if the signal had a scheduled
event on it in the current cycle

* ‘last_event - Returns time since the last event on a
signal

« ‘last_value - Returns the value of a signal prior to
an event

* ‘'last_active - Returns the time since the last
scheduled event on a signal

Electronic System Design Logic Design Implementation Technologies

Function Example

« Using the "event attribute to make a clocked circuit

library IEEE;
use IEEE.std logic 1164.all;
entity a_ffis
port { D, CLK:in std logic; a ff
Q :out std logic);
end a ff;
architecture a_ff arch of a ffis
begin
process (CLK)
begin
if CLK'event and CLEK="1" then
--CLK rising edge
Q==D;
end if;
end process;
end a ff arch;

Electronic System Design Logic Design Implementation Technologies

Rising_edge

« rising_edge is a function pre-defined in the std_logic_1164 package,
falling_edge also defined

process (CLK, RESET)
begin
if (RESET =17) then
Q =07
elsif (rising edge{CLK))then --CLK rising edge
Q=D
end if;
end process;

Mote: When reset =1 CLK event is not evaluated.

