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Logic Design Implementation 
Technologies 

1. Programmable Logic Devices (PLD) 

• Programmable Logic Array (PLA) 

• Programmable Array Logic (PAL) 

2. Introduction to FPGA & CPLD. 

3. Introduction to Hardware Description Language (HDL) 
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The complexity of a chip 

VLSI 
•>1000 gates 

MSI 
•100 – 1000 
gates 

LSI 
•10 – 100 
gates 

SSI 
•1 – 10 gates 

MSI  

components 

adders 

comparators 

Encoders 

Mux / 
demux 
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Basic Logic Components 

Logic 
Components 

Fixed Logic 

Standard 
cells 

Cell- based 
design 

Look-up 
Table 

ROM 

MUX 

FPGA 

Template 
based Logic 

Decoder 

PLDs 
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Programmable Logic Devices 
(PLDs) 

Types of PLDs 

General structure •   •   • 

inputs 

AND 

array 

•   •   • 

outputs 

OR 

array product 

terms 
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example: 

F0 = A  + B' C' 
F1 = A C'  +  A B 
F2 = B' C'  +  A B 
F3 = B' C  +  A 

personality matrix 
1 = uncomplemented in term 
0 = complemented in term 
– = does not participate 

1 = term connected to output 
0 = no connection to output 

input side: 

output side: 

product inputs  outputs 

 term A B C F0 F1 F2 F3 

AB 1 1 – 0 1 1 0 

B'C – 0 1 0 0 0 1 

AC' 1 – 0 0 1 0 0 

B'C' – 0 0 1 0 1 0 

A 1 – – 1 0 0 1 
reuse of terms 

Enabling concept 

• Shared product terms among outputs 
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PLA before programming 

• All possible connections are available before "programming" 

– in reality, all AND and OR gates are NANDs 
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(a) Before programming.            (b) After programming. 

Programming by blowing 
fuses  
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A B C 

F1 F2 F3 F0 

AB 

B'C 

AC' 

B'C' 

A 

After programming 

• Unwanted connections are "blown" 
– fuse (normally connected, break unwanted ones) 

– anti-fuse (normally disconnected, make wanted connections) 



Electronic System Design                                     Logic Design Implementation Technologies 

Nurul Hazlina                9 

(a)Unprogrammed and-gate.  

 

 

(b)Unprogrammed or-gate.  

 

 

(c)Programmed and-gate 
realizing the term ac 

 

(d)Programmed or-gate 
realizing the term a + b. 

 

(e)Special notation for an 
and-gate having all its 
input fuses intact.  

(f) Special notation for an or-
gate having all its input 
fuses intact 

(g)And-gate with non-fusible 
inputs.  

(h)Or-gate with non-fusible 
inputs. 

 

PLA notation.  
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A B C F1 F2 F3 F4 F5 F6 
0 0 0 0 0 1 1 0 0 
0 0 1 0 1 0 1 1 1 
0 1 0 0 1 0 1 1 1 
0 1 1 0 1 0 1 0 0 
1 0 0 0 1 0 1 1 1 
1 0 1 0 1 0 1 0 0 
1 1 0 0 1 0 1 0 0 
1 1 1 1 1 0 0 1 1 

A'B'C' 

A'B'C 

A'BC' 

A'BC 

AB'C' 

AB'C 

ABC' 

ABC 

A B C 

F1 F2 F3 F4 F5 
F6 

full decoder as for memory address 

bits stored in memory 

Programmable logic array 
example 

• Multiple functions of A, B, C 
– F1 = A B C 

– F2 = A + B + C 

– F3 = A' B' C' 

– F4 = A' + B' + C' 

– F5 = A xor B xor C 

– F6 = A xnor B xnor C 
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PALs and PLAs 

PAL 

Programmable array 
logic 

constrained topology of 
the OR array 

PLA 

Programmable logic 
array 

unconstrained fully-
general AND and OR 
arrays 
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A simple four-input, three-output PAL device.  
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An example of using a PAL device to realize two  

Boolean functions. (a) Karnaugh maps. (b) Realization.  



Electronic System Design                                     Logic Design Implementation Technologies 

Nurul Hazlina                14 

minimized functions: 
 
W = A + BD + BC 
X = BC' 
Y = B + C 
Z = A'B'C'D + BCD + AD' + B'CD' 

A B C D W X Y Z 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 
0 0 1 0 0 0 1 1 
0 0 1 1 0 0 1 0 
0 1 0 0 0 1 1 0 
0 1 0 1 1 1 1 0 
0 1 1 0 1 0 1 0 
0 1 1 1 1 0 1 1 
1 0 0 0 1 0 0 1 
1 0 0 1 1 0 0 0 
1 0 1 – – – – – 
1 1 – – – – – – 

PALs and PLAs: design example 

• BCD to Gray code converter 
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not a particularly good 
candidate for PAL/PLA 

implementation since no terms  
are shared among outputs 

 
 
 
 

however, much more compact  
and regular implementation  

when compared with discrete  
AND and OR gates 

A B  C D 

minimized functions: 
 
W = A + BD + BC 
X = B C' 
Y = B + C 
Z = A'B'C'D + BCD + AD' + B'CD' 

PALs and PLAs: design example 
(cont’d) 

• Code converter: programmed PLA 

A 

BD 

BC 

BC' 

B 

C 

A'B'C'D 

BCD 

AD' 

BCD' 

W X  Y Z 
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4 product terms  

per each OR gate 

A 

BD 

BC 

0 

BC' 

0 

0 

0 

B 

C 

0 

0 

A'B'C'D 

BCD 

AD' 

B'CD' 

W X Y Z 

A B  C D 

PALs and PLAs: design example 
(cont’d) 

• Code converter: programmed PAL 
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EQ NE LT GT 

A'B'C'D' 

A'BC'D 

ABCD 

AB'CD' 

AC' 

A'C 

B'D 

BD' 

A'B'D 

B'CD 

ABC 

BC'D' 

A B C D 

PALs and PLAs: another design 
example 

• Magnitude comparator 

A B C D EQ NE LT GT  
0 0 0 0 1 0 0 0 
0 0 0 1 0 1 1 0 
0 0 1 0 0 1 1 0 
0 0 1 1 0 1 1 0 
0 1 0 0 0 1 0 1 
0 1 0 1 1 0 0 0 
0 1 1 0 0 1 1 0 
0 1 1 1 0 1 1 0 
1 0 0 0 0 1 0 1 
1 0 0 1 0 1 0 1 
1 0 1 0 1 0 0 0 
1 0 1 1 0 1 1 0 
1 1 0 0 0 1 0 1 
1 1 0 1 0 1 0 1 
1 1 1 0 0 1 0 1 
1 1 1 1 1 0 0 0 

 
minimized functions: 
EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’     NE = AC’ + A’C + B’D + BD’ 
LT = A’C + A’B’D + B’CD                            GT = AC’ + ABC + BC’D’ 
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Activity 

• Map the following functions to the PLA below: 

– W = AB + A’C’ + BC’ 

– X = ABC + AB’ + A’B 

– Y = ABC’ + BC + B’C’ 

A B C 

W X Y 
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Activity (cont’d) 

• 9 terms won’t fit in a 7 term PLA 

– can apply concensus theorem 
to W to simplify to: 
W = AB + A’C’ 

• 8 terms wont’ fit in a 7 term PLA 

– observe that AB = ABC + ABC’ 

– can rewrite W to reuse terms: 
W = ABC + ABC’ + A’C’ 

• Now it fits 

– W = ABC + ABC’ + A’C’ 

– X = ABC + AB’ + A’B 

– Y = ABC’ + BC + B’C’ 

• This is called technology mapping 

– manipulating logic functions 
so that they can use available  
resources 

ABC 

ABC’ 

A’C’ 

AB’ 

A’B 

BC 

B’C’ 

A B C 

W X Y 
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Limitations of PLAs and PALs 

These chips are limited to fairly modest 

size, typically supporting a combined 

number of inputs plus outputs of not more 

than 32. 
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Introduction to  
FPGA & CPLD 
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FPGA and CPLD 

1. FPGA - Field-Programmable Gate Array. 

2. CPLD - Complex Programmable Logic Device 

3. FPGA and CPLD is an advance PLD. 

4. Support thousands of gate where as PLD only support 

hundreds of gates. 
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Complex Programmable 
Logic Devices(CPLDs) 

A CPLD comprises multiple PAL-like blocks on a single 

chip with internal wiring resources to connect the 

circuit blocks. 

It is made to implement complex circuits that cannot be 

done on a PAL or PLA. 
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CPLD – Notable supplier 

• Altera 

– MAX CPLD series 

• Atmel 

– The ATF15xxBE family  

• Cypress Semiconductor 

– Ultra37000 family  

• Lattice Semiconductor 

– ispMACH 4000ZE CPLD family  

• Xilinx 

– CoolRunner™-II CPLDs 
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CPLD Architecture 
 

  Row and column 

interconnects 

provide signal 

interconnects 

between the 

logic array 

blocks (LABs). 

 10 logic 

elements (LEs) 

in each LAB 
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CPLD - Logic Array Blocks 

• Each LAB consists of 10 LEs, LE carry chains, LAB control signals, 
a local interconnect, a look-up table (LUT) chain, and register chain 
connection lines. 
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CPLD 

1. CPLD featured in common PLD:- 

I. Non-volatile configuration memory – does not need an 

external configuration PROM. 

II. Routing constraints. Not for large and deeply layered logic. 

2. CPLD featured in common FPGA:- 

I. Large number of gates available. 

II. Some provisions for logic more flexible than sum-of-product 

expressions, can include complicated feedback path. 

3. CPLD application:- 

I. Address coding 

II. High performance control logic 

III. Complex finite state machines 
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What is an FPGA? 

• An FPGA is a PLD that supports 

 implementation of large logic circuits. 

 It is different from others in that it does not 

 contain AND or OR planes.  

• Instead, it contains logic blocks as for implementation 

• FPGA architecture consists of an array of logic blocks, I/O 

pads, and routing channels.  
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FPGA Architecture 
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What does a logic cell do? 

• Each logic cell combines a few binary inputs (typically 

between 3 and 10) to one or two outputs according to a 

Boolean logic function specified in the user program .   

• Cell's combinatorial logic may be physically 

implemented as a small look-up table memory (LUT) or 

as a set of multiplexers and gates.  

• LUT devices tend to be a bit more flexible and provide 

more inputs per cell than multiplexer cells at the 

expense of propagation delay.    
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Typical FPGAs 

FPGAs can be used to implement logic circuits of more than 

a few hundred thousand equivalent gates in size. 

The most commonly used logic block is a lookup table (LUT) 

as depicted in these figures. 
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Field Programmable 

• The FPGA's function is defined by a user's program rather 

than by the manufacturer of the device.     

• The program is either  'burned' in  permanently or semi-

permanently as part of a board assembly process, or is 

loaded from an external memory each time the device is 

powered up.   

• This user programmability gives the user access to 

complex integrated designs . 
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How are FPGA programs 
created? 

• Individually defining the many switch connections and cell 
logic functions would be a daunting task.   

• This task is handled by special software.  The software 
translates a user's schematic diagrams or textual 
hardware description language code then places and 
routes the translated design.  

• Most of the software packages have hooks to allow the 
user to influence implementation, placement and routing 
to obtain better performance and utilization of the device.   

• Libraries of more complex function macros (eg. adders) 
further simplify the design process by providing common 
circuits that are already optimized for speed or area.   
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FPGA – Notable Supplier 

• Xillinx 
– 7 Series FPGAs 

– Virtex®-6 FPGAs  

– Spartan®-6 FPGAs 

– Virtex-5 FPGAs 

– Extended Spartan-3A 
FPGAs  

– EasyPath™-6 FPGAs  

– XA Spartan-6 FPGAs  

– XA Spartan-3A FPGAs  

– XA Spartan-3A DSP 
FPGAs  

– XA Spartan-3E FPGAs  

• Altera 
– Stratix® V 

– Arria® II 

– Cyclone® IV 

– Stratix IV 

– Arria 

– Cyclone III 

• Lattice Semiconductor 
– LatticeECP3 family 

– LatticeECP2™ and 
LatticeECP2M™ 

• Actel 
– IGLOO FPGAs 

– ProASIC3 FPGAs 

 

http://www.xilinx.com/products/xas3e/index.htm
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FPGA 

• FPGA applications:- 

i. DSP 

ii. Software-defined radio 

iii. Aerospace 

iv. Defense system 

v. ASIC Prototyping 

vi. Medical Imaging 

vii. Computer vision 

viii. Speech Recognition 

ix. Cryptography 

x. Bioinformatic 

xi. And others. 
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CPLDs vs. FPGAs 
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INTRODUCTION TO 
HARDWARE DESCRIPTION 
LANGUAGE 
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Hardware Description Language 

• Similar to a typical computer programming language 

• But used to describe hardware rather than a program 

• IEEE standards :- VHDL (VHIC (Very High Speed Integrated 

Circuit ) Hardware Description Language) & Verilog 
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VHDL Design Flow 
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The Entity / Architecture pair 

• The basis of all VHDL designs 

• Entities can have more then one Architecture 

• Architectures can have only one entity 

• Entities define the interface (i.e. I/Os) for the design 

• Architectures define the function of the design 
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The Entity Details 

• Declare the input and output signals 

example1 
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The Architecture Details 

• Declare the functions 

ARCHITECTURE LogicFunc OF example1 IS 

BEGIN 

 f <= (x1 AND x2) OR (NOT x2 AND x3); 

END LogicFunc ; 
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The Architecture Details 

• Declaration section 

– Signals, constants and components local to the architecture can 

be declared here 

• Concurrent statements 

– Where the circuit is defined 
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Complete code 
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Logical Operators 

• VHDL predefines the logic operators 

– NOT   HIGHER PRECEDENCE 

– AND 

– NAND 

– OR 

– NOR 

– XOR 

– XNOR 

 

• Note: XNOR supported in standard 1076-1993 

There is no implied precedence 

for these operators. If there are 

two or more different operators 

in an equation, the order of 

precedence is from left to right 
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Comments 

-- (Double minus sign) is the comment mark 

• All text after the -- on the same line is taken as a comment 

• Comments only work on a single line 

• There is no block comment in VHDL 

• The ISE editor does support commenting of selected areas. 
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Data Types 

• DATA types: An ordered set of possible values define a particular 

type 

– Example: Type character is the ASCII character set 

• VHDL is a strongly typed language 

• All variables must be assigned a type 

• Type conversion functions are supplied in add on functions but 

are not part of the core of VHDL 
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Predefined Types 

• Boolean FALSE, TRUE 

• Bit (‘0’,’1’) 

• bit_vector(“101010”) 

• Integers: range -(2^31-1) to 2^31-1 

• Floating real: -1.E38 to 1.0E38 

• Time 

• Character 

• String 

• Enumerated (User defined) 

• Records, file & access types (Used in Simulation only) 
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Std_logic & std_ulogic 

Not part of 1076 

• Part of 1164 library 

• Std_logic is a resolved type 

• Std_logic is a subtype of std_ulogic 

• Std_ulogic Values: 
TYPE std_ulogic IS ('U', -- Uninitialized 

'X', -- Forcing Unknown 

'0', -- Forcing 0 

'1', -- Forcing 1 

'Z', -- High Impedance 

'W', -- Weak Unknown 

'L', -- Weak 0 

'H', -- Weak 1 

'-' -- Don't care 

); 
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Standard Logic Vectors 

• Defined in IEEE 1164 

• Ordered set of signals 
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Vector Properties 

• Vectors are filled from left to right, always 

• Indexes are assigned ascending or descending 

depending on the key word to or downto 

• examples 
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Array Ordering 
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Aggregates 
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Concatenation 

• Concatenation (&) is used to gather pieces of an array to construct a 
bigger array 

 

 

 

 

• Building a larger std_logic_vector from small vectors 

 

 

• Building a std_logic_vector from std_logic 

 

 

Note: the total width of the right hand side must be 

equal to the width of the left hand side 
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Concurrent Statements 

• Concurrent statements are Order independent!!! 
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Relational Operators 

• =  Equals 

• /=  Not equal 

• <  Ordering, less than 

• <=  Ordering, less than or equal 

• >  Ordering, greater than 

• >=  Ordering, greater than or equals 
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Process and Sequential Statements 

• Processes exist inside the Architecture 

• Processes have local variables 

• Processes contain Sequential Statements 

• Processes have a sensitivity list or an optional wait statement 

• Processes execute only when a signal in the sensitivity list 

changes 

• Processes can be used to make clocked circuits 
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The Process Framework 
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If Statements 

• Can have overlapping conditions 

• Imply priority, first true condition is always taken 

• Can have incomplete condition lists 

• Useful to control signal assignments 



Electronic System Design                                     Logic Design Implementation Technologies 

Nurul Hazlina                60 

Sequential If Statement 

• Used inside the Process 

• Can be used to control variable and signal 

assignments 

• Has optional elsif structure 
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Example Multiplexer 



Electronic System Design                                     Logic Design Implementation Technologies 

Nurul Hazlina                62 

What Goes Into the Sensitivity List 

• If a change on an input signal causes an 

 IMMEDIATE change in any signal that is assigned in that 

process then it should be in the sensitivity list 

• If there is NO IMMEDIATE change in a signal assigned in the 

process based on the change of a particular input signal, then 

that input signal should NOT be in the sensitivity list 
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When Statement 

• The 

concurrent 

version of the 

IF statement 
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The Case Statement 

• Used to control signal assignments 

• No priority implied 

• Control expression must cover all possible signal assignments 

• No conditions may overlap 
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Sequential Case Statement 

• Must be inside a 

process 



Electronic System Design                                     Logic Design Implementation Technologies 

Nurul Hazlina                66 

Select; the Concurrent Case 
Statement 
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Signals 

• Signals behave like wires within a VHDL design 

• Signals can be local to an Architecture 

• Signals have no MODE 

• Signals can be declared in the Architecture declarative 

region 

• Signals must have a type 

• Signals carry information between PROCESS es 
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Internal Signals 



Electronic System Design                                     Logic Design Implementation Technologies 

Nurul Hazlina                69 

Attributes 

• Provide additional information about many VHDL 

 objects 

• Can be assigned to most objects including signals, 

 variables, architectures and entities 

• Many attributes are predefined by VHDL, however user 

 defined attributes are also allowed 

• VHDL pre-defines five kinds of attributes, dependent 

 on the return value type which can be: 

– Value 

– Function 

– Signal 

– Type 

– Range 
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Value Attributes 

• `right - Returns right most value in array 

• `left - Returns left most value in array 

• `high - Returns highest index of an array 

• `low - Returns lowest index of an array 

• `length - Returns the length of an array 

• `ascending - Returns Boolean true if array is ascending. i.e. The 

array is a to array 
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Value Examples 
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Function Attributes 

• `event - Returns true if the signal had an 

immediate event on it 

• `active - Returns true if the signal had a scheduled 

event on it in the current cycle 

• `last_event - Returns time since the last event on a 

signal 

• `last_value - Returns the value of a signal prior to 

an event 

• `last_active - Returns the time since the last 

scheduled event on a signal 
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Function Example 

• Using the `event attribute to make a clocked circuit 
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Rising_edge 

• rising_edge is a function pre-defined in the std_logic_1164 package, 

falling_edge also defined 


